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SUMMARY

Optimizing direct electrical stimulation for the treat-
ment of neurological disease remains difficult due
to an incomplete understanding of its physical prop-
agation through brain tissue. Here, we use network
control theory to predict how stimulation spreads
through white matter to influence spatially distrib-
uted dynamics. We test the theory’s predictions
using a unique dataset comprising diffusion
weighted imaging and electrocorticography in epi-
lepsy patients undergoing grid stimulation. We find
statistically significant shared variance between the
predicted activity state transitions and the observed
activity state transitions. We then use an optimal
control framework to posit testable hypotheses
regarding which brain states and structural proper-
ties will efficiently improve memory encoding when
stimulated. Our work quantifies the role that white
matter architecture plays in guiding the dynamics
of direct electrical stimulation and offers empirical
support for the utility of network control theory in ex-
plaining the brain’s response to stimulation.

INTRODUCTION

Direct electrical stimulation has demonstrated clinical utility in

detecting brain abnormalities during surgery (Li et al., 2011)

and in mitigating symptoms of epilepsy, essential tremor, and

dystonia (Sironi, 2011; Perlmutter and Mink, 2006; Lozano and
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Lipsman, 2013). Apart from clinical diagnosis and treatment,

direct electrical stimulation has also been used to isolate the

areas that are responsible for complex higher-order cognitive

functions, including language (Jones et al., 2011; Mani et al.,

2008), semantic memory (Shimotake et al., 2015), and face

perception (Parvizi et al., 2012). An open and important question

is whether such stimulation can be used to reliably enhance

cognitive function, and if so, whether stimulation parameters

(e.g., intensity, location) can be optimized and personalized

based on individual brain anatomy and physiology. While some

studies demonstrate enhancements in spatial learning (Lee

et al., 2017) and memory (Ezzyat et al., 2018; Laxton et al.,

2010; Ezzyat et al, 2017; Kucewicz et al., 2018; Suthana et al.,

2012) following direct electrical stimulation, others show decre-

ments (Jacobs et al., 2016; Kim et al., 2018b) (for a review, see

Kim et al., 2016). Such conflicting evidence is also present in

the literature on other types of stimulation, including transcranial

magnetic stimulation. Proposed explanations range from varia-

tions in stimulation intensity (Reichenbach et al., 2011) to individ-

ual differences in brain connectivity (Downar et al., 2014).

A key challenge in circumscribing the utility of stimulation for

cognitive enhancement or clinical intervention is the fact that

we do not have a fundamental understanding of how an arbitrary

stimulation paradigm applied to one brain area alters the distrib-

uted neural activity in neighboring and distant brain areas (John-

son et al., 2013; Laxton et al., 2010; Lozano and Lipsman, 2013).

Models of stimulation propagation through brain tissue range in

complexity and biophysical realism (McIntyre et al., 2004b) from

those that only model the region being targeted to those that use

finite element models to expand predictions throughout different

tissue types (Yousif and Liu, 2009), including both gray matter

and white matter (Kim et al., 2011). Even in the simpler
thors.
creativecommons.org/licenses/by-nc-nd/4.0/).
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simulations of the effects of stimulation on a local cell population,

there are challenges in accounting for the orientation of cells and

the distance from the axon hillock, which can lead to strikingly

different circuit behaviors (McIntyre et al., 2004b). In the more

expansive studies of the effects of stimulation across the brain,

it has been noted empirically that minute differences in electrode

location can generate substantial differences inwhichwhitemat-

ter pathways are directly activated (Lujan et al., 2013; Riva-

Posse et al., 2014) and that the white matter connectivity of an

individual can predict the behavioral effects of stimulation

(Horn et al., 2017; Ellmore et al., 2009). These differences are

particularly important in predicting the response to therapy,

given recent observations that stimulation to white matter may

be particularly efficacious in treating depression (Riva-Posse

et al., 2013) and epilepsy (Toprani and Durand, 2013). Despite

these critical observations, a first-principles intuition regarding

how the effects of stimulation may depend on the pattern of

white matter connectivity present in a single human brain has re-

mained elusive.

Network control theory provides a potentially powerful

approach for modeling direct electrical stimulation in humans

(Tang and Bassett, 2017). Building on recent advances in phys-

ics and engineering, network control theory characterizes a

complex system as composed of nodes interconnected by

edges (Newman, 2010), and then specifies a model of network

dynamics to determine how external input affects the time-vary-

ing activity of the nodes (Liu et al., 2011). Drawing on canonical

results from linear systems and structural controllability (Kailath,

1980), this approach was originally developed in the context of

technological, mechanical, and other man-made systems (Pas-

qualetti et al., 2014), but has notable relevance for the study of

natural processes from cell signaling (Cornelius et al., 2013) to

gene regulation (Zañudo et al., 2017). In applying such a theory

to the human brain, one first represents the brain as a network

of nodes (brain regions) interconnected by structural edges

(white matter tracts) (Bassett and Sporns, 2017), and then one

posits a model of system dynamics that specifies how control

input affects neural dynamics via propagation along the tracts

(Gu et al., 2015). Formal approaches built on this model address

questions of where control points are positioned in the system

(Gu et al., 2015; Tang et al., 2017; Muldoon et al., 2016; Wu-

Yan et al., 2018), as well as how to define spatiotemporal pat-

terns of control input to move the system along a trajectory

from an initial state to a desired final state (Gu et al., 2017; Betzel

et al., 2016). Intuitively, these approaches may be particularly

useful in probing the effects of stimulation (Muldoon et al.,

2016) and pharmacogenetic activation or inactivation (Grayson

et al., 2016) for the purposes of guiding transitions between

cognitive states or treating abnormalities of brain network dy-

namics such as epilepsy (Ching et al., 2012; Ehrens et al.,

2015; Taylor et al., 2015), psychosis (Braun et al., 2018), or bipo-

lar disorder (Jeganathan et al., 2018). However, this intuition has

not yet been validated with direct electrical stimulation data.

Here, we posit a simple theory of brain network control, and

we test its biological validity and utility in combined electrocorti-

cography (ECoG) and diffusion weighted imaging (DWI) data

frompatients withmedically refractory epilepsy undergoing eval-

uation for resective surgery. For each subject, we constructed a
structural brain network in which nodes represented regions of

the Lausanne atlas (Cammoun et al., 2012) and edges repre-

sented quantitative anisotropy between these regions estimated

from diffusion tractography (Yeh et al., 2013) (Figure 1A). Upon

this network, we stipulated a noise-free, linear, continuous-

time, and time-invariant model of network dynamics (Gu et al.,

2015; Betzel et al., 2016; Tang et al., 2017; Gu et al., 2017; Kim

et al., 2018a) from which we built predictions about how regional

activity would deviate from its initial state in the presence of

exogenous control input to any given node. Using ECoG data ac-

quired from the same individuals during an extensive direct elec-

trical stimulation regimen (Figure 1B), we test these theoretical

predictions by representing (1) regional activity as the power of

an electrode in a given frequency band, (2) the pre-stimulation

brain state as the power before stimulation, and (3) the post-

stimulation brain state as the power after stimulation (Figure 1C).

After quantifying the relative accuracy of our theoretical predic-

tions, we next use the model to make more specific predictions

about the control energy required to optimally guide the brain

from a pre-stimulation state to a specific target state. Here, we

select a target state associated with successful memory encod-

ing, although the model could be applied to any desired target.

We quantify successful encoding states using subject-level po-

wer-based biomarkers of good memory encoding extracted

with a multivariate classifier from ECoG data collected during a

verbal memory task (Ezzyat et al., 2017). Finally, we investigate

how certain topological (Kim et al., 2018a) and spatial (Roberts

et al., 2016) properties of the network of a subject alter its

response to direct electrical stimulation, and we ask whether

that response is also modulated by control properties of the

area being stimulated (Gu et al., 2015; Muldoon et al., 2016).

Essentially, our study posits and empirically tests a simple theory

of brain network control, demonstrating its utility in predicting

response to direct electrical stimulation.
RESULTS

Our model assumes the time-invariant network dynamics

_xðtÞ = AxðtÞ+BuðtÞ; (Equation 1)

where the time-dependent state x is an N31 vector ðN= 234Þ
whose ith element gives the band-specific ECoG power in sensor

i if i contained an electrode (xi = 1 otherwise); A is the N3N adja-

cency matrix estimated from DWI data; and B is an N3N matrix

that selects the control set K = u1;.;up, where p is the number

of regions that receive exogenous control input (in most cases,

p = 1). In our data, the stimulation site was typically the temporal

lobe or cingulate (see Figure S1; Table S1 for further details

regarding electrode location). The input is constant in time and

given by uðtÞ = b3 I3 logðuÞ3 ðDtÞ, where I is the empirical

stimulation amplitude in amperes (range, 0.5–3 mA), u is the

empirical stimulation frequency in hertz (range, 10–200 Hz),

and Dt is the number of simulated samples (here, 950) divided

by the empirical stimulation duration (range, 250–1,000 ms) in

seconds. Note that since our model is in arbitrary time units

with no clear mapping onto physical units of time (i.e., seconds),
Cell Reports 28, 2554–2566, September 3, 2019 2555
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Figure 1. Schematic of Methods

(A) Depiction of network construction and definition of brain state. (Left) We segment subjects’ diffusion weighted imaging data into N = 234 regions of interest

using a Lausanne atlas (Cammoun et al., 2012). We treat each region as a node in a whole-brain network, irrespective of whether the region contains an electrode.

Edges between nodes represent mean quantitative anisotropy (Yeh et al., 2013) along the streamlines connecting them. (Right, top)We summarize the network in

an N3N adjacency matrix. (Right, bottom) A brain state is defined as the N31 vector comprising activity across the N regions. Any element of the vector cor-

responding to a region with an electrode is defined as the band-limited power of ECoG activity measured by that electrode. Each brain state is also associated

with an estimated probability of being in a good memory state, using a previously validated machine learning classifier approach (Ezzyat et al., 2017).

(B) Schematic of a single stimulation trial. First, ECoG data are collected for 500 ms. Then, stimulation is applied to a given electrode for 250–1,000 ms. Finally,

ECoG data are again collected after the stimulation.

(C) Schematic of the open loop and optimal control paradigms. In the open loop design, energy uðtÞ is applied in silico at the stimulation site to the initial, pre-

stimulation brain state xð0Þ. The system will travel to some other state xðTÞ, as stipulated by our model of neural dynamics, and we will measure the similarity

between that predicted state and the empirically observed post-stimulation state. In the optimal control design, the initial brain state xð0Þ has some position in

space that evolves over time toward a predefined target state xðTÞ. At every time point, we calculate the optimal energy ðuðtÞÞ required at the stimulating electrode

to propel the system to the target state.
we incorporate the duration of stimulation into the energy term—

following the intuition that longer stimulation sessions add more

total energy—rather than incorporating it into the number of time

units. The free parameter b scales the input to match the units

of x. Biologically, b reflects the relation between activity in a

cell population and the current from an electrode, which in turn

can be influenced by the orientation of the cells, the proximity

of the cell body or axons to the electrode, and the quality of

the electrode (McIntyre et al., 2004a) (see STAR Methods). This

model formalizes the hypothesis that white matter tracts

constrain how stimulation affects brain state and that those ef-

fects can be quantified using network control theory.

Predicting Post-stimulation States by Open Loop
Control
We begin by exercising the model to determine whether our the-

ory accurately predicts changes in brain state induced by direct

electrical stimulation. Specifically, we simulate Equation 1 to

predict how stimulation alone (independent of other ongoing

intrinsic dynamics) will alter brain state, given the structural adja-

cency matrix A and the initial state xð0Þ comprising the ECoG

power at every node recorded pre-stimulation (xi = 1 if node i is

a region without electrodes and the Z scored power otherwise;

see Figure S3 for further details). For each stimulation event,

we calculate the Pearson’s correlation coefficient between the
2556 Cell Reports 28, 2554–2566, September 3, 2019
empirically observed post-stimulation state of regions of interest

(ROIs) with electrode coverage (an electrode by frequency ma-

trix) and the predicted post-stimulation state at every time point

in the simulated trajectory xðtÞ. Furthermore, xi = 1 if node i is a

region without electrodes, and the Z scored power otherwise

(including stimulating and non-stimulating electrodes). To mea-

sure the capacity of the model simulation to predict the post-

stimulation state, we measure the maximum correlation

achieved across the model simulation time of a.u. Since there

is no clear mapping of stimulated time steps onto physical units

of time (i.e., seconds), we chose a number of time steps that

were sufficient to allow correlation values to stabilize (Figure S1).

In Figure S1, we provide evidence that results are highly consis-

tent across different time step sizes as long as this stability has

been reached. Accordingly, we compute a maximum correlation

value across simulated time points between the model predic-

tion and the empirically observed post-stimulation state for

each stimulation trial (mean = 0.036, SD = 0.019; Figure 2A).

We observe that the mean of the maximum correlation values

is significantly greater than zero (t test N = 11, t = 5:83,

p = 3.31 3 10�5). We note that this correlation represents the

impact of stimulation alone on linear dynamics and does not

take into account any other incoming stimuli from the surround-

ing environment or any ongoing cognitive or metabolic pro-

cesses, nonlinear dependencies, or inter-frequency interactions
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Figure 2. Post-stimulation Brain State Depends on White Matter

Network Architecture

(A) Boxplots depicting the average maximum correlation between the empir-

ically observed post-stimulation state and the predicted post-stimulation state

at every time point in the simulated trajectory xðtÞ for N = 11 subjects. Boxplots

indicate the median (solid horizontal black line) and quartiles of the data. Each

data point represents a single subject, averaged over all of the trials (with

different stimulation parameters).

(B) Boxplots depicting the average time to reach the peak magnitude (positive

or negative) correlation between the empirically observed post-stimulation

state and the theoretically predicted post-stimulation state at every time point

in the simulated trajectory xðtÞ. Time is measured in a.u. Color indicates

theoretical predictions from Equation 1, where A is (1) the empirical network

(purple) estimated from the diffusion imaging data, (2) the topological null

network (dark charcoal), and (3) the spatial null network (light charcoal).

See also Figures S1 and S2.
(Canolty and Knight, 2010; Buzsáki et al., 2012; Peterson and

Voytek, 2017). Complementing this estimate, we were also inter-

ested in the time point (measured in a.u.) at which the trial

reached its largest magnitude correlation (positive or negative)

before decaying toward zero. In our model, the white matter net-

works define the dynamics of how brain states evolve in time. In

addition to affecting the amount that each region changes its ac-

tivity, the pattern of connections also affects the dynamics of

brain states, and how quickly input to the system will dissipate.

If more time points are required (and the peak time is large),

then energy needs longer to spread, and it needs to spread

across higher-order connections compared to when the peak

time is small. We observed that the time at which the peak

magnitude occurred differed across trials, having a mean of

298 a.u. with an SD of 114 a.u. (Figure 2B).

To determine the influence of network geometry on our model

predictions, we compared the empirical observations to those

obtained by replacing A in the simulation with one of two null

model networks, each designed to independently remove spe-

cific geometric features of the structural network (see Figure S5
for examples). First, for each trial, we constructed a topological

null, a randomly rewired network that preserved the edge distri-

bution, degree distribution, number of nodes, and number of

edges. Second, we constructed a spatial null, a randomly re-

wired network that preserved the edge distribution, and the rela-

tion between edge strength and Euclidean distance. If the

observed correlations are due to unique features of human white

matter tracts (and not the number edges and their strength or

patterns of connectivity that arise from the spatial embedding

of the brain), then we would expect smaller correlations from

the null models. Similarly, if the observed peak correlation times

are due to the need for energy to spread to unique higher-order

connections in human white matter networks, we would expect

earlier peak times in the null models. Using a repeated-measures

ANOVA, we find a significant main effect across null models

(Fð2;20Þ = 20:6, p = 1.37 3 105), and the time at which the

maximum correlation values occur (Fð2;20Þ = 21:78, p =

9.50 3 10�6). We then performed post hoc analyses and found

that the topological null produced significantly weaker maximum

correlations between the empirically observed post-stimulation

state and the simulated states (paired t test:N = 11, t = 4:82, un-

corrected p = 7.04 3 10�4), which also peaked significantly

earlier in time than the true data (N = 11, t = 6:68, uncorrected

p = 5.47 3 10�5). The spatial null model also produced signifi-

cantly weaker maximum correlations between the empirically

observed post-stimulation state and the predicted post-stimula-

tion states (permutation test N = 11, t = 4:27, uncorrected p =

1.65 3 10�3), which also occurred significantly earlier in time

than that observed in the true data (N = 11, t = 2:83, uncorrec-

ted p = 0.018). We observed consistent results in individual sub-

jects (after correcting for multiple comparisons, and with me-

dium to large effect sizes) (Figure S2), across all of the

frequency bands (FigureS2),with different valuesof b (Figure S1),

and when using a smaller resolution atlas (Figure S2) for whole-

brain parcellation. The only exception was that the spatial null

models did not peak significantly earlier than the empirical

models after Bonferroni correction for individual frequency

bands (Figure S2). Considering individual variability in DWI esti-

mates, we next asked whether our model would more accurately

predict transitions with an individual’s own connectivity,

compared to the connectivity of another subject in the same

cohort. We did not find a significant difference (paired t test

N = 11, t = � 0:40, p = 0:70), indicating that our model gener-

alizes across the subjects in this cohort and does not either

depend or capitalize upon individual differences in connectivity.

Overall, these observations support the notion that structural

connections facilitate a rich repertoire of system dynamics

following cortical stimulation and directly constrain the dynamic

propagation of stimulation energy in the human brain in amanner

that is consistent with a simple linear model of network

dynamics.

Simulating State Transitions by Optimal Network
Control
We next sought to use the model to better understand the prin-

ciples constraining brain state transitions in the service of cogni-

tive function and their response to exogenous perturbations in

the form of direct electrical stimulation. Building on the network
Cell Reports 28, 2554–2566, September 3, 2019 2557
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Figure 3. Longer-Distance Trajectories

Require More Stimulation Energy

(A) The normalized energy required to transition

between the initial state and the post-stimulation

state, as a function of the Frobenius norm between

the initial state and the post-stimulation state. The

black solid line represents the best linear fit (with

gray representing standard error) and is provided

simply as a guide to the eye (b = 8.3 3 10�3,

t = 18.11, p < 2 3 10�16). Normalization is also

performed to enhance visual clarity.

(B) The energy required to transition to a good

memory state, as a function of the initial probability

of being in a good memory state (b = �0.18,

t = �14.4, p < 2 3 10�16).

(C) The energy required to transition to a good

memory state as a function of the empirical

change in memory state resulting from stimulation

(b = 9.5 3 10�2, t = 8.43, p < 2 3 10�16).

(D) In N = 3 experimental sessions that included

both sham and stimulation trials, we calculated the

energy required to reach the post-stimulation

state or the post-sham state, rather than a target

good memory state. Here, we show the difference in energy required for sham state transitions in comparison to stimulation state transitions (paired t test, N = 3,

p = 0.01). Error bars indicate SEMs across trials. Across all four panels, different shades of blue indicate different experimental sessions and subjects (N = 16).

See also Figure S4.
dynamics stipulated in Equation 1, we used an optimal control

framework to calculate the optimal amount of external input u

to deliver to the control set K containing the stimulating elec-

trode, driving the system from a specific pre-stimulation state to-

ward a target post-stimulation state (Figure 1C). Put differently,

rather than predicting the brain state changes associated with

empirical stimulation for input as we did with our open-loop con-

trol model, the optimal control model will analytically solve for the

optimal input to get to a specific state. Because this model will

necessarily reach the target state that is specified, the optimal

control model is better suited to make theoretical predictions

about where and when to stimulate rather than to predict state

changes based on a certain stimulation paradigm. Here, the spe-

cific (or target) post-stimulation state was defined as a period

with a high probability of successfully encoding a memory and

was operationalized using a previously validated classifier

constructed from ECoG data from the same subjects during

the performance of a verbal memory task (Ezzyat et al., 2017)

(Figure 1A). We use this target state as a simple, data-driven

estimate of a single behaviorally relevant state for illustrative

purposes rather than as an exhaustive account of successful

memory processes. To determine the optimal input, we use a

cost function that minimizes both the energy and the difference

of the current state from the target state:

min
u

Z T

0

ðxT � xðtÞÞ0SðxT � xðtÞÞ+ r uðtÞ0uðtÞdt; (Equation 2)

where xT is the target state, S is a diagonal N3N matrix that se-

lects a subset of states to constrain (here, S is the identity and all

diagonal entries are equal to 1), r is the importance of the input

penalty relative to the state penalty, T is the time allotted for the

simulation, and the prime indicates a matrix transposition (see
2558 Cell Reports 28, 2554–2566, September 3, 2019
Figure S3 and STAR Methods for details about parameter selec-

tion). Since the input uðtÞ is being solved for rather than defined

by the user, we do not differentiate between the different stimu-

lation parameters used in different trials. We note that optimizing

the cost function in Equation 2 necessarily identifies simulated

optimal control trajectories from the pre-stimulation state to a

good memory state reasonably close to the target (final distance

from target mean = 0.12, SD = 0.06) with minimal error (range

from 3:65310�5 to 5:193 10�4).

We begin by addressing the hypothesis that greater energy

should be required to reach the target state when it is farther

from the initial state. We operationalize this notion by defining

distance in four different ways. We define distance as the Frobe-

nius norm of the difference between initial and target states. We

fit a linear mixed effects model to the integral of the input

squared, or energy (here,Bu) in every trial, treating the Frobenius

norm distance between initial and final state as a fixed effect, and

treating subject as a random effect. We find that the distance be-

tween the initial and the final state is positively related to the en-

ergy required for the transition (b = 8:33 10�3, t(7,547) = 18.11,

p < 23 10�16) (Figure 3A). Although this result is fairly intuitive, it

is also important to consider other measurements of distance

that are more informed by biological intuitions about the energy

landscape of the brain. Second, we define distance by the mem-

ory capacity in the initial state. It is important to keep in mind that

this memory state is defined by a previously trained and vali-

dated classifier and not by task performance during stimulation.

We fit a linear mixed effects model to the integral of the input

squared in every trial, treating the probability of the initial state

of successfully encoding a memory as a fixed effect and treating

subject as a random effect. We find that the probability of the

initial state of successfully encoding a memory is negatively

related to the energy required for the transition (b = � 0:18,

t(7,547) = 14.4, p < 2 3 10�16). We also find that the probability
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Figure 4. Topological and Spatial Constraints on the Energy

Required for Stimulation-Based Control

(A) Average input energy required for each transition from the pre-stimulation

state to a good memory state, as theoretically predicted from Equation 1,

where A is (1) the empirical network (purple) estimated from the diffusion im-

aging data, (2) the topological null network (dark charcoal), and (3) the spatial

null network (light charcoal) for N = 11 subjects.

(B) The relation between the determinant ratio and the energy required for the

transition from the pre-stimulation state to a good memory state. The color

scheme is identical to that used in (A). The p value is from a paired t test: N = 11,

t = 3.64, p = 4.6 3 10�3.

See also Figure S5.
of the initial state of successfully encoding a memory explains

variance in the energy required for the transition independent

of the Frobenius norm distance (linear mixed effects

model including both distance measures: initial probability

t(7,547) = �7.09, p = 1.47 3 10�12; Frobenius norm t(7,547) =

12.98, p < 2 3 10�16) (Figure 3B). These findings suggest that

states that begin closer to the target require less energy to reach

the target. Third, we define distance as the observed change in

memory state resulting from stimulation. We fit a linear mixed ef-

fects model to the input squared in every trial, treating the

change in memory state as a fixed effect and treating

subject as a random effect. We find that the change in memory

state is positively related to the energy required for the transition

(b = 9:53 10�2, t (7,547) = 8.43, p < 2 3 10�16) (Figure 3C).

These results were consistent across two alternate sets of

optimal control parameters (Figure S4).

This set of results serves as a basic validation that transitions

between nearby brain states will generally require less energy

than transitions between distant states. This finding holds

whether distance is defined in terms of the difference in Frobe-

nius norm between matrices of regional power or in terms of

the estimated probability to support the cognitive process of

memory encoding. In specificity analyses, we also determined

whether these relations were expected in appropriate random

network null models. We observed that the relations were signif-
icantly attenuated in theoretical predictions from Equation 1,

where A is either the topological null network (N = 7,547,

p = 6.1 3 10�4) or the spatial null network (N = 7,547,

p = 0.0017) (Figure S4). We also found that the largest differ-

ences between the empirical relations and those expected in

the null networkswere observed in the context of biological mea-

sures of distance (e.g., initial probability, change in probability),

with only modest differences seen in the statistical measure of

distance (the Frobenius norm).

As a fourth and final test of the biological relevance of these

findings, we considered sham trials, in which no stimulation

was delivered, as compared to stimulation trials. We expect

that the state that the brain reaches after stimulation is farther

away from the initial state than the state that the brain reaches

naturally at the conclusion of a sham trial. We first examine this

expectation in the context of the Frobenius norm distance

discussed above. We observed that two out of the three exper-

imental sessions that included sham stimulation displayed

significantly larger distances (measured by the Frobenius

norm) between pre-and post-stimulation states for stimulation

conditions than for sham conditions (permutation test, N >

192, p < 6.8 3 10�3 for all subjects). We next tested whether

more energy would be required to simulate the transition from

the initial pre-stimulation state to the post-stimulation state

than from the initial pre-sham state to the post-sham state. We

found consistently greater energy for stimulation trials compared

to sham trials in all of the datasets (paired t test, N = 3, p = 0.01;

Figure 3D). We further confirmed this finding with a non-para-

metric permutation test assessing differences in the distribution

of energy values across trials for sham conditions and the distri-

bution of energy values across trials for stimulation conditions

(permutation test, N > 192, p < 23 10�16 for all subjects). These

observations support the notion that transitions between nearby

brain states occur without stimulation (sham) and require little

predicted energy, whereas transitions between distant brain

states occur with stimulation and require greater predicted

energy.

The Role of Network Topology in Stimulation-Based
Control
While it is natural to posit that the distance between brain states

is an important constraint on the ease of a state transition, there

are other important principles that are also likely to play a critical

role. Paramount among them is the architecture of the network

available for the transmission of control signals. We therefore

turn to the question of which features of the network predict

the amount of energy required for each transition from the pre-

stimulation state to a good memory state. To address this

question, we considered the empirical networks as well as the

topological and spatial null model networks discussed earlier.

We find that the optimal control input energy required for these

state transitions differs across network types (one-way

repeated-measures ANOVA Fð2;20Þ = 14:75, p = 1.06 3

10�4). In post hoc testing, we found that the optimal control

energy was significantly different between the empirical network

and the topological null network (paired t test: N = 11, t = 3:64,

p = 4.6 3 10�3) (Figure 4A), but not between the empirical

network and the spatial null network (N = 11, t = � 1:80,
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Figure 5. Role of Local Topology Around the Region Being Stimulated

(A) Transitions from the observed initial state to a good memory state required significantly greater energy when affected by the middle temporal sensors than

when affected by the inferior temporal sensors.

(B) Relation between persistent (c2 = 3.89, p = 0.049) (top) or transient (c2 = 1.69, p = 0.19) (bottom) controllability of the stimulated region and the energy

predicted from optimal transitions from the initial state to a goodmemory state. We only allow energy to be injected into a single electrode-containing region, and

we consider a broadband state matrix.

Every color is a subject (N = 11) and every dot is a different simulated stimulation site.

(C) As in (B), but when considering the a band state vector only (persistent controllability: c2 = 13.8, p = 2.00 3 10�4; transient controllability: c2 = 11.4, p =

7.5 3 10�4).

See also Figure S6.
p = 0.10). This observation suggests that the spatial embedding

that characterizes both the real network and the spatial null

network may increase the difficulty of control. In supplemental

analyses (Figure S5), we test two additional spatially embedded

null models that further preserve degree distribution and

strength sequence, and we find similar average energies to the

empirical and spatial null models discussed here (see Figure S5).

We hypothesized that the difference in optimal control energy

could be mechanistically explained by the determinant ratio, a

recently proposed metric quantifying the trade-off between

connection strength (facilitating control) and connection homo-

geneity (hampering control) (Kim et al., 2018a). A network with

a high determinant ratio will have weak, homogeneous connec-

tions between the control nodes and nodes being controlled. We

found that across all of the networks, the determinant ratio ex-

plains a significant amount of variance in energy after accounting

for network type (linear mixed effects model with network type

and determinant ratio as fixed effects: c2ð2; N = 33Þ = 13:3,

p = 2.65 3 10�5) (Figure 4B). These results support the notion

that spatial embedding could impose energy barriers by

compromising the trade-off between the strength and homoge-

neity of connections emanating from the stimulating electrode

(see Figure S5 for extensions to other spatially embedded null

models).

Characteristics of Efficient Regional Controllers
Thus far, we have seen that the distance of the state transition

and the architecture of the network available for the transmission

of control signals both affect the energy required. However,

neither of these factors address the potential importance of

anatomical characteristics specific to the region being stimu-

lated. Such regional effects are salient in the 1 subject (S8, 3
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stimulation sessions across 7 unique electrodes) in our patient

sample who had multiple empirical stimulation sites spanning

the same number of ROIs. Since both sites span the same num-

ber of ROIs, we know that any differences in energy cannot be

due to differences in the size of the control set used in the stim-

ulation. In this patient, we found that transitions from the

observed initial state to a good memory state required signifi-

cantly greater energy when stimulation was delivered to elec-

trodes in the middle temporal region than when stimulation

was delivered to the inferior temporal region (permutation test,

N = 555, p < 2 3 10�16) (Figure 5A). We hypothesized that this

sensitivity to anatomical location could be mechanistically ex-

plained by regional persistent and transient modal controllability,

which quantify the degree to which specific eigenmodes of the

dynamics of the network can be influenced by input applied to

that region (Figure S6). Energetic input to nodes with high persis-

tent controllability will result in large perturbations to slowly de-

caying modes of the system, while energetic input to nodes

with high transient controllability will result in large perturbations

to quickly decaying modes of the system.

To test our hypothesis, we simulated optimal trajectories from

the initial state to a good memory state while only allowing en-

ergy to be injected into a single electrode-containing region (irre-

spective of whether empirical stimulation was applied there). We

then compared the energy predicted from these simulations to

the regional controllability. We found a significant relation be-

tween persistent (but not transient) modal controllability of the

region being stimulated and the input energy of the state

transition (linear mixed effects model accounting for subject:

persistent controllability c2ð1;374Þ = 3:89, p = 0.049, transient

controllability c2ð1; 374Þ = 1:69, p = 0.19) (Figure 5B). We

note that the strength of the region being stimulated was not a
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Figure 6. Network Topology and Brain State Predict Energy

Requirements

(A) Schematic of the three topology and state features included in the random

forest model that we built to predict energy requirements. Network-level ef-

fects (tan) are captured by the determinant ratio, regional effects (brown) are

captured by persistent controllability, and state-dependent effects (red) are

captured by the initial memory state.

(B) Comparison of the out-of-bag mean squared error for a model in which

each subject’s (N = 11) determinant ratio, persistent controllability, and initial

memory state are used to predict their required energy. We compared the

performance of this model to the performance of a distribution of N = 1,000

models in which the association between energy values and predictors was

permuted uniformly at random.
significant predictor of energy (linear mixed effects model

c2ð1; 374Þ = 3:5, p = 0.061), although there is only a small differ-

ence between the predictive power of strength and persistent

controllability. In addition, in the one subject who had two empir-

ical stimulation locations, we observed that the middle temporal

stimulation site with larger energy requirements had smaller

persistent controllability (0.058) than the inferior temporal site

with smaller energy (0.072). Given this modest effect for broad-

band state transitions, we next asked whether the influence of

regional controllability varied based on the specific frequency

band being controlled. Notably, we found that both transient

and persistent controllability showed strong relations to energy

in the a band (linear mixed effects model: persistent controlla-

bility c2ð1; 374Þ = 13:8, p = 2.00 3 10�4, transient controllability

c2ð1; 374Þ = 11:4, p = 7.5 3 10�4; Bonferroni corrected for mul-

tiple comparisons across frequency bands) (Figure 5C). Persis-

tent controllability alone also showed a statistically significant

relation for the high g band (linear mixed effects model: persis-

tent controllability c2ð1;374Þ = 12:2, p = 4.673 10�4) (Figure S6).

These findings suggest that the local whitematter architecture of

the stimulated regions can support the selective control of slowly

damping dynamics.

Effective Prediction of Energy Requirements
In the previous section, we presented a series of analyses with

the goal of elucidating what aspects of brain state andwhitemat-

ter connectivity affect the energy requirements predicted by our

model in an effort to better understand the network-wide effects
of direct electrical stimulation. Here, we conclude by synthesiz-

ing these results into a single model to predict the energy re-

quirements of a stimulation paradigm, given the persistent

controllability of the region to be stimulated, the determinant ra-

tio of the network to be controlled, and the probability of encod-

ing a memory at the time of stimulation (Figure 6A). We fit a

random forest model to predict energy given these inputs from

our data, and we compared the performance of this model to

the performance of a distribution of 1,000 models in which the

association between energy values and predictors was

permuted uniformly at random. We found that our model had

an out-of-bag mean squared error of 9:283 10�3, which was

substantially lower than the null distribution (mean =

9:62310�3 and SD = 2:973 10�5). We also found that our model

explained 93.2% of the variance in the predicted energy of the

state transition. Random forest models also produce a measure

of variable importance, which represents the degree to which

including these variables tends to reduce the prediction error.

We found that the determinant ratio was the most important

(increased node purity = 627), followed by the persistent control-

lability (320), followed by the initial probability of encoding a

memory (23.0). Broadly, these results suggest that the energy

requirements for a specific state transition can be accurately

predicted given the simple features of the connectome and the

current brain state.

DISCUSSION

While direct electrical stimulation has great therapeutic potential,

its optimization and personalization remain challenging, in part

due to a lack of understanding of how focal stimulation affects

the state of both neighboring and distant regions. Here, we use

network control theory to test the hypothesis that the effect of

direct electrical stimulation on brain dynamics is constrained

by the white matter connectivity of an individual. By stipulating

a simplified noise-free, linear, continuous-time, and time-

invariant model of neural dynamics, we demonstrate that time-

varying changes in the pattern of ECoG power across brain

regions is better predicted by the true white matter connectivity

of an individual than either topological or spatial network null

models. We build on this observation by positing a model for

exact brain state transitions in which the energy required for

the state transition is minimized, as is the length of the trajectory

through the available state space. We use this model to make

theoretical predictions about how white matter architecture

and brain states make stimulation to these specific states easier.

We demonstrate that transitions betweenmore distant states are

predicted to require greater energy than transitions between

nearby states; these results are particularly salient when dis-

tance is defined based on differences in the probability with

which a cross-regional pattern of ECoG power supports memory

encoding. In addition to the distance between initial and target

states, we find that regional and global characteristics of the

network topology predict the energy required for the state tran-

sition: networks with smaller determinant ratios (stronger, less

homogeneous connections) and stimulation regions with higher

persistent controllability tend to demand less energy. Finally, we

demonstrate that these two topological features in combination
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with the initial brain state explain 93% of the variance in required

energy across subjects. Overall, our study supports the notion

that control theoretic models of brain network dynamics provide

biologically grounded, individualized hypotheses of response to

direct electrical stimulation by accounting for how white matter

connections constrain state transitions.

A Role for Network Control Theory in Modern
Neuroscience
Developing theories, models, and methods for the control of

neural systems is not a new goal in neuroscience. Whether in

support of basic science (e.g., seminal experiments from Hodg-

kin and Huxley) or in support of clinical therapies (e.g., techno-

logical development in brain-machine interfaces or deep brain

stimulation), efforts to control neural activity have produced a

plethora of experimental tools with varying levels of complexity

(Schiff, 2011). Building on these empirical advances, the devel-

opment of a theory for the control of distributed circuits is a

logical next step. Network control theory is one particularly

promising option. In assimilating brain state and connectivity in

a mathematical model (Schiff, 2011), network control theory of-

fers a first-principles approach to modeling neural dynamics,

predicting its response to perturbations, and optimizing those

perturbations to produce a desired outcome. In cellular neuro-

science, network control theory has offered predictions of the

functional role of individual neurons in Caenorhabditis elegans,

and those predictions have been validated by perturbative ex-

periments (Yan et al., 2017). While the theory has also offered

predictions in humans (Gu et al., 2015; Muldoon et al., 2016;

Ching et al., 2012; Taylor et al., 2015; Jeganathan et al., 2018),

these predictions have not been validated in accompanying per-

turbative experiments. Here, we address this gap by examining

the utility of network control theory in predicting empirically re-

corded brain states and by validating the fundamental assump-

tion that state transitions are constrained by the white matter

connectivity of an individual. The work provides theoretical sup-

port for emerging empirical observations that structural connec-

tivity can predict the behavioral effects of stimulation (Horn et al.,

2017; Ellmore et al., 2009), thus constituting an important first

step in establishing the promise and utility of control theoretic

models of brain stimulation.

The Principle of Optimal Control in Brain State
Transitions
By positing a model for optimal brain state transitions, we relate

expected energy expenditures to a simple, validated estimate of

memory encoding, directly relating the theory to a desired

behavioral feature. This portion of the investigation was made

possible by an important modeling advance addressing the chal-

lenge of simulating a trajectory whose control is dominated by a

single node—the stimulating electrode. This type of control is an

intuitive way to model stimulation, in which one wishes to cap-

ture changes resulting from a single input source. However, prior

work has demonstrated that while the brain is theoretically

controllable from a single point, the amount of energy required

can be so large as to make the control strategy impractical (Gu

et al. (2015). Here, we extend prior models of optimal control

(Betzel et al., 2016; Gu et al., 2017) by relaxing the input matrix
2562 Cell Reports 28, 2554–2566, September 3, 2019
B such that it allows large input to stimulated regions, but also

allows small, randomly generated amounts of input at other no-

des in the network. This approach greatly lowers the error of the

calculation and also produces narrowly distributed trajectories

for the same inputs (see STAR Methods).

Topological Influencers of Control
Beyond the distance of the state transition, we found that both

local and global features of the network topology were important

predictors of control energy. In line with previous work investi-

gating controllability radii (Menara et al., 2018), energy require-

ments were lower for randomly rewired networks. Both empirical

and topological graphs share the common feature of modularity

(Chen et al., 2013), which is destroyed in random topological null

models (Roberts et al., 2016). Prior theoretical work has demon-

strated that modularity is one way in which to decrease the

energy of control by decreasing the determinant ratio, a quanti-

fication of the relation between the strength and heterogeneity of

direct connections from the controlling node to others (Kim et al.,

2018a). Here, we confirmed that the determinant ratio accurately

predicted the required energy, while leaving a small amount of

variance unexplained. We expected that this unexplained vari-

ance could be somewhat accounted for by features of the local

network topology surrounding the stimulated node (Tang et al.,

2017). Consistent with our expectation, we found that persistent

controllability was the only significant predictor of energy across

all frequency bands, indicating a specific role of slow modes in

these state transitions. The effect was particularly salient

in two bands with consistent (yet different) activity patterns in

memory encoding—the a band and the high g band (Fell et al.,

2011; Buzsáki and Moser, 2013). Future avenues for research

could include a comprehensive investigation of whether and

why different regional topologies facilitate the control of fre-

quency bands with distinct characteristic changes.

Clinical Implications
Our study represents a first step toward developing a control

theoretic model to answer two pressing questions in optimizing

direct electrical stimulation to meet clinical needs: (1) what

changes in the brain after a specified stimulation event and (2)

which regions are most effective to stimulate. Network control

is by no means the only candidate model for answering these

questions (McIntyre et al., 2004b; Yousif and Liu, 2009; Kim

et al., 2011). Nevertheless, it is a particularly promising model

in that it can account for global changes to focal events, is gener-

alizable across any initial and target brain state, and is specific to

each individual and his or her white matter architecture. The

linear model of dynamics only captures a small amount of vari-

ance observed after stimulation, but stands to benefit from an

expansion of the model to nonlinear models of dynamics, to

time-varying changes in connectivity, and to field spread of stim-

ulation. We also show that the optimal control energy for a given

transition captures intuitions about the energy landscape of the

brain despite being based on simplified linear dynamics. This

metric was then used to identify features of white matter archi-

tecture that could facilitate control. Investigation into whether

metrics could be incorporated into existing multimodal predic-

tions of stimulation outcome is a logical next step in developing



a tool for the clinical selection of stimulation regions. Finally, an

evaluation of long-term efficacy of specific stimulation para-

digms informed by principles of network control is warranted

and would benefit from work in non-human animal models in

which precise measurements of plasticity are accessible.

Methodological Considerations
Primary Data

As with any model of complex biological systems, our results

must be interpreted in the context of the underlying data. First,

we note that DWI data provide an incomplete picture of white

matter organization, andevenstate-of-the-art tractography algo-

rithmscan identify spurious connections (Thomaset al., 2014). As

higher resolution imaging, reconstruction, and tractography

methods emerge, it will be important to replicate the results we

report here. Second, while ECoGdata provide high temporal res-

olution, it is collected from patients with epilepsy and resultsmay

not generalize to a healthy population (Parvizi andKastner, 2018).

However, it isworth noting that recentwork has shown that tissue

damage resulting from recurrent seizures canbeminimal (Rossini

et al., 2017), and most electrodes are not placed in epileptic tis-

sue (Parvizi and Kastner, 2018). Nevertheless, this population

can display atypical physiological signatures ofmemory (Glowin-

ski, 1973), as well as atypical white matter connectivity (Gross

et al., 2006). It will be important to extend this work to non-inva-

sive techniques accessible to healthy individuals.

Modeling Assumptions

Our results must also be interpreted in light of model assump-

tions. First, we consider a relaxed input matrix to ensure that

state transitions are primarily influenced by the set of stimulating

electrodes and, to a lesser extent, non-stimulating electrodes.

This choice is not a true representation of single-point control,

but instead reflects the fact that the system is constantly modu-

lated by endogenous sources (Gu et al., 2017; Betzel et al.,

2016). Second, our model uses a time-invariant connectivity ma-

trix. While DWI data are relatively stable over short timescales,

repeated stimulation can result in dynamic changes in plasticity

that are not captured here (Malenka and Bear, 2004).

Lastly, we note that our model assumes linear network dy-

namics. While the brain is not a linear system, such simplified

approximations can predict features of fMRI data (Honey

et al., 2007), predict the control response of nonlinear systems

of coupled oscillators (Feldt Muldoon et al., 2013), and more

generally provide enhanced interpretability over nonlinear

models (Kim and Bassett, 2019). Nevertheless, considering

control in nonlinear models of neural dynamics will constitute

an important next step for two reasons. First, nonlinear models

of brain dynamics can capture a richer repertoire of brain states

that is more consistent with the repertoire observed in neural

data (Jirsa et al., 2014; Jirsa and Haken, 1996; Breakspear

et al., 2003; Messé et al., 2014, 2015; Hansen et al., 2015).

Second, nonlinear approaches offer distinct types of control

strategies. Specifically, linear control is frequently used to

examine the transition between an initial state and a final state.

Yet, some hypotheses about neural function may benefit from

nonlinear control approaches such as feedback vertex set con-

trol (Zañudo et al., 2017; Cornelius et al., 2013) that allow one to

examine the transition from one manifold of activity to another
(Slotine and Li, 1991; Sontag, 2013). Such attractor-based

control seems intuitively appropriate for the study of complex

behaviors that are not well characterized by a single pattern

of activity, but rather by a different trajectory through many

states. Despite some progress, nonlinear approaches still lag

far behind linear control approaches in their applicability and

capability, and thus further theoretical work is needed (Slotine

and Li, 1991; Sontag, 2013).

Defining Brain States

In our model, a brain state represents the Z scored power across

electrodes in eight logarithmically spaced frequency bands from

1 to 200 Hz. This choice was guided by (1) the goal of maintaining

consistency with the brain states on which the memory classifier

was trained and (2) the fact that power spectra are well-docu-

mented behavioral analogs for memory (Ezzyat et al., 2017;

Fell et al., 2011; Buzsáki and Moser, 2013). However, since

many power calculations require convolution with a sine wave,

power is insensitive to non-sinusoidal and phase-dependent

features of the signal (Schalk et al., 2017; Cole et al., 2017; Vinck

et al., 2011). It would be interesting to explore transitions in other

state spaces, such as instantaneous voltage (Schalk et al.,

2017). Lastly, it is important to note that our algorithm controls

each frequency band independently, although incorporating in-

ter-frequency coupling (Peterson and Voytek, 2017; Bonnefond

et al., 2017; Canolty and Knight, 2010) could be an interesting di-

rection for future work. These considerations involving brain

state also affect the interpretation of our target state as a good

memory state. While our selection of target state does not

exhaustively sample patterns of brain activity in which success-

ful encoding can occur and only makes claims about a narrow

range of all memory processes (encoding specifically), for the

purposes of exploring the utility of network control theory in

modeling direct stimulation, this classifier provides an important,

if relatively narrow, behavioral link.

Conclusions and Future Directions
Our study begins to explore the role of white matter connectivity

in guiding direct electrical stimulation, with the goal of driving

brain dynamics toward states with a high probability of memory

encoding. We demonstrate that our model of targeted direct

electrical stimulation tracks well with biological intuitions and is

influenced by both regional and global topological properties

of underlying white matter connectivity. Overall, we show that

our control theoretic model is a promising method that has the

potential to inform hypotheses about the outcome of direct elec-

trical stimulation.
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Zañudo, J.G.T., Yang, G., and Albert, R. (2017). Structure-based control of

complex networks with nonlinear dynamics. Proc. Natl. Acad. Sci. USA 114,

7234–7239.

http://refhub.elsevier.com/S2211-1247(19)31041-1/sref64
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref64
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref64
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref65
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref65
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref65
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref66
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref66
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref66
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref67
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref68
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref68
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref69
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref69
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref69
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref70
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref70
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref70
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref71
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref71
https://doi.org/10.1101/185074
https://doi.org/10.1101/185074
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref73
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref73
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref73
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref74
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref74
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref74
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref74
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref75
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref75
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref75
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref75
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref75
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref76
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref76
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref76
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref77
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref77
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref77
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref77
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref78
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref78
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref79
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref79
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref79
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref80
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref80
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref81
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref81
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref81
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref81
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref81
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref82
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref82
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref83
https://pdfs.semanticscholar.org/fac6/5d27c83dd9645cfb769e74440ed5fcdaee16.pdf
https://pdfs.semanticscholar.org/fac6/5d27c83dd9645cfb769e74440ed5fcdaee16.pdf
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref85
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref85
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref85
https://doi.org/10.1103/RevModPhys.90.031003
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref87
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref87
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref87
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref87
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref88
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref88
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref88
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref89
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref89
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref89
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref89
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref90
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref90
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref90
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref91
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref91
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref91
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref91
https://doi.org/10.1007/s00332-018-9448-z
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref93
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref93
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref93
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref94
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref94
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref94
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref95
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref95
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref95
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref96
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref96
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref96
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref96
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref96
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref97
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref97
http://refhub.elsevier.com/S2211-1247(19)31041-1/sref97


STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

Raw ECoG data This Paper http://memory.psych.upenn.edu/Request_RAM_Public_Data_access

Memory state classifications Ezzyat et al., 2018 http://memory.psych.upenn.edu/Request_RAM_Public_Data_access

Raw DTI data This paper http://memory.psych.upenn.edu/Request_RAM_Public_Data_access

Software and Algorithms

MATLAB Mathworks RRID: SCR_001622 https://www.mathworks.com/

R R Development Core Team RRID:SCR_000036 http://cran.r-project.org/manuals.html

Freesurfer Dale, Fischl, & Sereno, 1999 RRID:SCR_001847; https://surfer.nmr.mgh.harvard.edu/

DSI Studio Yeh et al., 2013 RRID:SCR_009557 http://dsi-studio.labsolver.org

Brain Connectivity Toolbox Rubinov and Sporns, 2010 RRID: SCR_004841 http://sites.google.com/site/bctnet/

Network control tools This paper https://github.com/jastiso/NetworkControl
LEAD CONTACT AND MATERIALS AVAILABILITY

Raw data can be obtained upon request from http://memory.psych.upenn.edu/Request_RAM_Public_Data_access. This study did

not generate any new data outside of the RAM project. Original code used in this project can be found at https://github.com/jastiso/

NetworkControl. Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Dan-

ielle Bassett (dsb@upenn.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Subject Details
Electrocorticography and diffusion weighted imaging data were collected on eleven subjects (age 32 ± 10 years, 63.6% male and

36.4% female) as part of a multi-center project designed to assess the effects of electrical stimulation onmemory-related brain func-

tion. Data were collected at Thomas Jefferson University Hospital and the Hospital of the University of Pennsylvania. The research

protocol was approved by the institutional review board (IRB approval number 820553) at each hospital and informed consent was

obtained from each participant.

Electrocorticography – ECoG
Electrophysiological data were collected from electrodes implanted subdurally on the cortical surface aswell as deepwithin the brain

parenchyma. In each case, the clinical team determined the placement of the electrodes to best localize epileptogenic regions. Sub-

dural contacts were arranged in both strip and grid configurations with an inter-contact spacing of 10mm. Depth electrodes had 8-12

contacts per electrode, with 3.5 mm spacing.

Electrodes were anatomically localized using separate processing pipelines for surface and depth electrodes. To localize depth

electrodes we first labeled hippocampal subfields and medial temporal lobe cortices in a pre-implant, 2 mm thick, coronal

T2-weighted MRI using the automatic segmentation of hippocampal subfields (ASHS) multi-atlas segmentation method (Yushkevich

et al., 2015). We additionally used whole brain segmentation to localize depth electrodes not in medial temporal lobe cortices. We

next co-registered a post-implant CTwith the pre-implantMRI using AdvancedNormalization Tools (ANTs) (Avants et al., 2008). Elec-

trodes visible in the CTwere then localized within subregions of themedial temporal lobe by a pair of neuroradiologists with expertise

in medial temporal lobe anatomy. The neuroradiologists performed quality checks on the output of the ASHS/ANTs pipeline. To

localize subdural electrodes, we first extracted the cortical surface from a pre-implant, volumetric, T1-weightedMRI using Freesurfer

(Fischl et al., 2004). We next co-registered and localized subdural electrodes to cortical regions using an energy minimization algo-

rithm. For patient imaging in which automatic localization failed, the neuroradiologists performed manual localization of the

electrodes.

Intracranial data were recorded using one of the following clinical electroencephalogram (EEG) systems (depending on the site of

data collection): Nihon Kohden EEG-1200, Natus XLTek EMU 128, or Grass Aura-LTM64. Depending on the amplifier and the pref-

erence of the clinical team, the signals were sampled at either 500 Hz, 1000 Hz or 1600 Hz and were referenced to a common contact

placed either intracranially, on the scalp, or on the mastoid process. Intracranial electrophysiological data were filtered to attenuate
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line noise (5 Hz band-stop fourth order Butterworth, centered on 60Hz). To eliminate potentially confounding large-scale artifacts and

noise on the reference channel, we re-referenced the data using a bipolar montage. To do so, we identified all pairs of immediately

adjacent contacts on every depth electrode, strip electrode, and grid electrode, and we took the difference between the signals re-

corded in each pair. The resulting bipolar timeseries was treated as a virtual electrode and used in all subsequent analysis. We per-

formed spectral decomposition of the signal into 8 logarithmically spaced frequencies from 3 to 180 Hz. Power was estimated with a

Morlet wavelet, in which the envelope of the wavelet was defined with a Gaussian kernel that allowed for 5 oscillations of the fre-

quency of interest (one of 8, from 3-180 Hz). This kernel was then convolved with 500 ms epochs of ECoG data before and after stim-

ulation to obtain estimates of power. The resulting time-frequency data were then log-transformed, and z-scored within session and

within frequency band across events.

Diffusion Weighted Imaging – DWI
Diffusion imaging data were acquired from either the Hospital for the University of Pennsylvania (HUP), or Jefferson University

Hospital. At HUP, all scans were acquired on a 3T Siemens TIM Trio scanner with a 32-channel phased-array head coil. Each

data acquisition session included both a DWI scan as well as a high-resolution T1-weighted anatomical scan. The structural scan

was conducted with an echo planar diffusion weighted technique acquired with iPAT using an acceleration factor of 2. The diffusion

scan had a b value of 2000 s/mm2 and TE/TR = 117/4180 ms. The slice number was 92. Field of view read was 210 mm and slice

thickness was 1.5 mm. Acquisition time per DWI scan was 8:26 min. The anatomical scan was a high-resolution 3D T1-weighted

sagittal whole-brain image using an MPRAGE sequence. It was acquired with TR = 2400 ms; TE = 2.21 ms; flip angle = 8 degrees;

208 slices; 0.8 mm thickness. At Jefferson University Hospital, all scans were acquired on a 3T Philips Acheiva scanner. Each data

acquisition session included both a DWI scan as well as a high-resolution T1-weighted anatomical scan. The diffusion scan was

61-directional with a b value of 3000 s/mm2 and TE/TR = 7517/98 ms, in addition to 1 b0 images. Matrix size was 963 96 with a slice

number of 52. Field of view was 2303 1303 230 mm2 and slice thickness was 2.5 mm. Acquisition time per DWI scan was just over

9 min. The anatomical scan was a high-resolution 3D T1-weighted sagittal whole-brain image using an MPRAGE sequence. It was

collected in sagittal orientation with in-plane resolution of 2563 256 and 1 mm slice thickness (isotropic voxels of 1 mm3, 170 slices,

TR = 650 ms, TE = 3.2 ms, Field of view 256 mm, flip angle 8 degrees, SENSE factor = 1, duration = 5 min).

Diffusion volumes were skull-stripped using FSL’s BET, v5.0.10. Volumes were subsequently corrected for eddy currents and mo-

tion using FSL’s EDDY tool, v.5.0.10 (Andersson and Sotiropoulos, 2016). Anatomical scans were processed with FreeSurfer v6.0.0.

Surface reconstructions were used to generate subject-specific parcellations based on the Lausanne atlas from the Connectome

Mapper Toolbox (Daducci et al., 2012). Each parcel was then individually warped into the subject’s native diffusion space. Using

DSI-Studio, orientation density functions (ODFs) within each voxel were reconstructed from the corrected scans using GQI

(Yeh et al., 2013). We then used the reconstructed ODFs to perform a whole-brain deterministic tractography using the derived

QA values in DSI-Studio (Yeh et al., 2013). We generated 1,000,000 streamlines per subject, with a maximum turning angle of 35

degrees and a maximum length of 500 mm (Cieslak and Grafton, 2014). We hold the number of streamlines between participants

constant (Griffa et al., 2013).

METHOD DETAILS

Stimulation Protocol
During each stimulation trial, we delivered stimulation using charge-balanced, biphasic, rectangular pulses with a pulse width of

300 ms. We cycled over the following parameters in consecutive trials: pulse frequency (10–200 Hz), pulse amplitude (0.5–3.0

mA), stimulation duration (0–1 s), and inter-stimulation interval (2.75–3.25 s). These stimulation parameter ranges were chosen to

be well below the accepted safety limits for charge density, and ECoG was continuously monitored for after-discharges by a trained

neurologist. Some subjects ðN= 8Þ only received stimulation to one set of regions, while other received stimulation to multiple sets of

regions ðN= 3Þ (Table S1) Each subjects stimulating electrodes are shown in Figure S7. Most electrodes were in the temporal lobe,

with some in the cingulate and frontal lobe.

Memory State Classification and Good Memory State Definition
Prior to collecting the data used in this study, each subject had a memory classifier trained based on their performance during a ver-

bal memory task. The input data that we used was the spectral power averaged across the time dimension for each word encoding

epoch (0-1600ms relative to word onset). Each subject’s personalized classifier was then used to return a likelihood of being in a good

memory state for each pre- and post-stimulation recording. For more information about the classifier and the task design, see Ezzyat

et al. (2017). A good memory state was defined for each subject using this classifier output. The target state was defined as the

average of the top 5% of states with the largest probabilities (returned from the classifier) associated with them. The threshold of

5% was chosen as the smallest threshold that reliably included sufficient trials in the average (minimum number of trials was

192). The probabilities associated with these final target states ranged from 0.61 to 0.74.
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The Mathematical Model - Open Loop Control
We use network control theory to model the effect of stimulation on brain dynamics because it accounts for systems level properties

of brain states alongside external input. The theory requires us to stipulate a model of brain dynamics as well as a formulation of the

network connecting brain areas whose time-varying state in response to stimulation wewish to understand. As described in themain

manuscript, we use a linear time invariant model:

_xðtÞ = AxðtÞ+BuðtÞ; (3)

where xðtÞ is a N31 vector that represents the brain state at a given time, and N is the number of regions (N = 234). More specifically

xðtÞ is the z-scored power at time t inm regions containing electrodes. TheN-m regions without electrodes are assigned an initial and

target state equal to 1. In the network adjacency matrix A, each ijth element gives the quantitative anisotropy between region i and

region j. Note that we scale A by dividing it by its largest eigenvector and then we subtract the identity matrix; these choices assure

that A is stable.

The N31 input vector uðtÞ represents the input required to control the system. Lastly, B is the N3N input matrix whose diagonal

entries select the regions that will receive input, and this set of selected regions is referred to as the control set k. Here B will be

selected to assure that the input energy is concentrated at the stimulating electrode; to increase the computational tractability of

the control calculation, B will also be selected to include additional control points. Specifically, if i represents the index of the stim-

ulating electrode, thenBði;iÞ = 1. If j is the index of a region containing a different electrode, thenBðj;jÞ = 0. Lastly, if k is the index of a

region that does not contain an electrode, then Bðk;kÞ = a, where a is randomly drawn from a normal distribution with mean 53 10�4

and standard deviation 53 10�5. The distribution was chosen specifically to give a narrow range of values with a relative standard

deviation of 10%, and a mean that was small enough to allow stimulation control to dominate the dynamics, but large enough to

improve the computational tractability of the problem.

The Mathematical Model - Optimal Control
Our longterm goal is to use the model described above to predict optimal parameters for stimulation. To take an initial step toward

that goal, we seek to estimate the optimal energy required to reach a state that is beneficial for cognition, and we therefore define the

following optimization problem:

min
u

Z T

0

ðxT � xðtÞÞ0SðxT � xðtÞÞ+ rukðtÞ0ukdt;

s:t: _x=AxðtÞ+BuðtÞ; xð0Þ= x0; and xðTÞ= xT ;

(4)

where xT is the target state, T is the control horizon, a free parameter that defines the finite amount of time given to reach the target

state, and r is a free parameter that weights the input constraint. We also define S to be equal to the identity matrix, in order to

constrain all nodes to physiological activity values. The input matrix B was defined to allow input that was dominated by the stimu-

lation ROI. More specifically, rather than being characterized by binary state values, regions without electrodes were given a value of

approximately 5310�5 at their corresponding diagonal entry inB. This additional input ensured that the calculation of optimal energy

was computationally tractable (which is not the case for input applied to a very small control set). With these definitions, two con-

straints emerge from our optimization problem. First, ðxT � xðtÞÞTSðxT � xðtÞÞ constrains the trajectories of a subset of nodes by pre-
venting the system from traveling too far from the target state. Second, rukðtÞTuk constrains the amount of input used to reach the

target state, a requirement for biological systems, which are limited by metabolic demands and tissue sensitivities.

To compute an optimal u* that induces a transition from the initial stateSxð0Þ to the target stateSxðTÞ, we define the Hamiltonian as

Hðp; x;uk; tÞ = ðxT � xÞ0SðxT � xÞ+ ru0
ku+pðAx+BukÞ: (5)

According to the Pontryagin minimization principle, if u�
k is a solution with the optimal trajectory x�, then there exists a p� such that

vH

vx
= � 2SðxT � x�Þ+A0p� = � _p

�
;

vH

vp
=Ax� +Buk;

vH

vuk

= 2ru�
k +B0p� = 0:

From Equations 4, 5, and 6, we can derive that

u�
k = � 1

2r
B0p�; (6)
_x� = Ax� � 1

2r
BB0p�; (7)
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such that the only unknown is now p�. Next, we can rewrite Equations 4 and 8 as

�
_x�

_p
�

�
=

2
64 A

1

2r
BB0

�2S � A0

3
75� x�

p�

�
+

�
0
2S

�
xT : (8)

Let us define

~A=

2
664

A
1

2r
BB0

�2S � A0

3
775;

~x=

"
x�

p�

#
;

~b=

"
0

2S

#
xT ;

so that Equation 9 can be rewritten as

_~x = ~A~x + ~b; (9)

which can be solved as

~xðtÞ = e
~At~xð0Þ+ ~A

�1
�
e
~Atxð0Þ � I

�
~b: (10)

Let

c= ~A
�1
�
e
~At~xð0Þ � I

�
~b; (11)

and

e
~AT =

�
E11 E12

E21 E22

�
: (12)

Then, by fixing t = T, we can rewrite Equation 10 as�
_x�ðTÞ
_p
�ðTÞ

�
=

�
E11 E12

E21 E22

��
_x�ð0Þ
_p
�ð0Þ

�
+

�
c1

c2

�
: (13)

From this expression we can obtain

x�ðTÞ = E11x
�ð0Þ+E12p

8ð0Þ+c1: (14)

Moreover, if we let S = I� S, then as a known result in optimal control theory (Bryson, 1996), Sp�ðTÞ = 0. Therefore,

Sp�ðTÞ = SE21x
�ð0Þ+SE22p

� +Sc2 = 0: (15)

We can now solve for p�ð0Þ as follows:

p�ð0Þ=
�
SE12

SE22

�+
 

�
�
SE11

SE21

�
x�ð0Þ �

�
Sc1

Sc2

�
+

�
SxðTÞ

0

�!
; (16)

where ½$�+ indicates theMoore-Penrose pseudoinverse of amatrix. Now that we have obtained p�ð0Þ, we can use it and x� (or xð0Þ) to
solve for ~x via forward integration. To solve for u�

k, we simply take p� from our solution for ~x and solve Equation 7.

Parameter Selection
Our optimal control framework has three free parameters: g, the scaling of the matrix A, r, the relative importance of the input

constraint over the distance constraint, and T, the control horizon, or amount of time given for the system to converge. Intuitively,

g, which is only applied after the matrix has been scaled to be stable, controls the timescale of the dynamics of the system: large

values down-weight the smaller eigenmodes, causing them to damp out more quickly. Very large values of this parameter tend to

increase the computational complexity of estimating the matrix exponentials. Lower values of the parameter r corresponds to relax-

ing the constraint on minimal energy, leading to larger energies but lower error values. The final parameter T determines how quickly

the system is required to converge. Small values of Twill make the systemdifficult to control, and likely lead to larger error and energy.
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Moderately large values of Twill give the systemmore time to converge, and will typically lower the error. However, very large values

of T will also increase the difficulty of calculating the matrix exponentials, and will lead to high error values.

Because we lack strong, biologically motivated hypotheses to help us in choosing values for these parameters, we explored a

range of values for all three parameters, and found the set that produced the smallest error in the optimal control calculation. We

chose this approach rather than the alternative of fitting the model to resting state data for two reasons. First, solving optimal control

problems can easily become computationally intractable for large matrices with sparse control sets, both of which are features of our

model. This inherent difficulty decreases our confidence in fitting the model to resting state data, and increases the expected uncer-

tainty in parameter estimates derived therefrom. Second, since we are explicitly modeling exogenous control and our parameters

relate directly to that exogenous input, we expect that the parameters that best fit resting state data would be very different from

those that best fit stimulation data. For each parameter, we first calculated the error of the simulations for parameter values that

were logarithmically spaced between 0.001 and 100. We then selected a subspace of those parameter values that produced small

error values. From this subspace, we calculated the z-score of each error value, and we identified the region in the three-dimensional

space in which the z-score was less than or equal to � 1. We then took the average coordinate in this space across subjects, and the

3 parameter values specified by this coordinate became our parameter set of interest for all main analyses presented in our study.

This process is illustrated in Figure S3. Specifically, the parameters selected were g = 4, T = 0:7, and r = 0:3. For the purposes of

reliability and reproducibility, here in the supplement we also report several results for key analyses when using two different sets

of parameters that also produced low error. The two additional sets used were g = 7, T = 0:4, and r = 0:1, and g = 3, T = 0:9,

and r = 0:5.

QUANTIFICATION AND STATISTICAL ANALYSIS

Post-Stimulation State Correlations - Open Loop Control
We simulated stimulation to a given region in the Lausanne atlas from the observed pre-stimulation state (xðiÞ is the z-scored power if

i is a region with an electrode, xðiÞ= 1 otherwise). We then calculated the two-dimensional Pearson’s correlation coefficient between

the empirically observed post-stimulation state and the predicted post-stimulation state at time points t = 5 to t =T in the simulated

trajectory xðtÞ. The time points t < 5were excluded to prevent the initial state, or the trajectory very near to it, from being considered as

the peak. We calculated two statistics of interest: the maximum correlation reached and the time at which the largest magnitude

(positive or negative) correlation occurred.

Metrics for Energy and Simulation Error - Optimal Control
We calculated trajectories for each of 8 logarithmically spaced frequency bands spanning 1 to 200 Hz, and then we combined them

into a single statematrix for most analyses reported in themainmanuscript. Thenwe calculated distances between the initial and final

states using only the m-p regions that had variable states.

Energy:

To quantify differences in trajectories, and the ease of controlling the system, we calculated a single measure of energy for every

trajectory. We used a measure of total energy that incorporates the weights of B in addition to the energy u:

Ek;x0xT =

Z T

0

kBkux0xT k 2

2dt: (17)

Our decision to define B as a weighted, rather than binary matrix made the problem of optimal control much more tractable, but also

necessitated the incorporation of B into the calculation of energy for a more representative estimate. Trajectories were simulated for

each frequency band, and these trajectories were combined into a single state matrix for all analyses, unless otherwise specified

(e.g., as in Figure 5C and in some frequency band specific figures in the Supplementary Materials). More specifically, comparisons

of brain state were calculated as the two-dimensional Pearson’s correlation coefficient between simulated region-by-frequency

matrices and empirical region-by-frequency matrices (Figure 2). Only regions with electrodes were included in correlations, as

they were the only regions with initial state measurements. Energy in all optimal control analyses was calculated in each band inde-

pendently, and then summarized in a region-by-frequency matrix at each time point (Figures 3, 4, 5, and 6). A single measure of en-

ergy for a trial was calculated by integrating the Frobenius norm of the energy matrix over time.

Numerical Error:

Because optimal control is a computationally difficult problem, we also calculate the numerical error associated with each compu-

tation. The numerical error is calculated as

nerr =

�����
�����
 �

SE12

SE22

�
p�
!
+

 �
SE11

SE21

�
x�ð0Þ+

�
Sc1

Sc2

�
�
�
SxðTÞ

0

�! �����
����� (18)
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Network Statistics
To probe the role of graph architecture in the energy required for optimal control trajectories, we calculated the determinant ratio,

which is defined as the ratio of the strength to the homogeneity of the connections between the first degree driver (anything with

a non-zero entry in B) and the non-driver (anything with a zero entry in B) (Kim et al., 2018a). This metric was derived assuming

that a system has a greater number of driver nodes than non-driver nodes, and that the initial and final states are distributed around

zero. Quantitatively, the trade-off between strength and homogeneity is embodied in the ratio between the determinant of the Gram

matrix of all driver to non-driver connections, and the determinant of that samematrix with each non-driver node removed iteratively.

The gram matrix here is the inner product of the vectors giving connections from driver nodes to and non-driver nodes. More spe-

cifically, if C is the Gram matrix of all driver to non-driver connections, and Ck is the matrix of all connections from driver nodes to all

but the kth non-driver node, the determinant ratio is defined byN�1
PN

k = 1ðdetðCkÞ=detðCÞÞ. Since the calculation of the determinant of

large matrices can be computationally challenging, we use the equivalent estimate of the trace of the inverse of the Gram matrix,

TraceðC�1Þ, to calculate the average determinant ratio (see Kim et. al. for a full derivation) (Kim et al., 2018a).

To understand the expected differences in stimulation-induced dynamics based on which region is actually being stimulated, we

calculated two network control statistics: the persistent modal controllability and the transient modal controllability. Intuitively, the

persistent (transient) controllability is high in nodes where the addition of energy will result in large perturbations to the slow (fast)

modes of the system (Gu et al., 2015). Typically, modal controllability is computed from the eigenvector matrix V = ½vij� of the adja-

cency matrix A. The jth mode of the system is poorly controllable from node i if the entry for vij is small. Modal controllability is then

calculated as fi =
PN

j =1ð1� l2j ðAÞÞv2ij . We adapt this discrete-time estimate to continuous-time by definingmodal controllability to be

fi =
PN

j =1ð1� ðeljðAÞdtÞ2Þv2ij . Here, dt is the time step of the trajectory and eljðAÞdt is the conversion from continuous to discrete eigen-

values of the system. Persistent (transient) modal controllability are computed in the same way, but using only the 10% largest

(smallest) eigenvalues of the system. We chose 10% as a strict (allowing few modes to be considered) cutoff, that also showed a

large amount of variance across nodes for both metrics (Figure S6).

Here we complement the regional metric analysis reported in the main manuscript by also testing two additional metrics: average

controllability and communicability. Intuitively, average controllability is proportional to the average input energy needed for a certain

set of nodes to drive the system to all possible target states (though this was only proven mathematically using a full control set). This

metric is interpreted as a node’s ability to push the network to many easy-to-reach states (Gu et al., 2015). Average controllability is

proportional to the TraceðW�1
k Þ, where W�1

k , the inverse of the controllability Gramian, is defined as Wk =
PN

t = 1A
tBkB

T
kA

t. Here, Bk

identifies a specific control set k. Following prior work, we calculate average controllability as TraceðWkÞ, because the inverse is often
poorly conditioned (Gu et al., 2015).

Intuitively, communicability is a measure of how well a node communicates with every other node in the network. It is similar to

network efficiency (Latora and Marchiori, 2001), but considers all paths and walks between two nodes, rather than only the shortest

paths. This feature is useful because, biologically, non-shortest paths (such as thalamocortical loops) can be important in many com-

putations (Crofts and Higham, 2009). The metric is weighted such that shorter paths carry more weight. Specifically, we calculated

weighted communicability asG= eD
�1=2AD�1=2

and the average communicability for each node as gi = 1=N
PN

j = 1Gi;j. HereN is the num-

ber of nodes in the network, and D is the diagonal weighted degree matrix where Di;i = di. We have chosen a measure of commu-

nicability where longer paths are weighted by a factor of 1 =k! because it is a standard measure in the field, and because it can be

justified by arguments from statistical mechanics (Crofts and Higham, 2009); however other weighting schemes could also be used.

Null Models
We compared the empirically observed values – of the maximum correlation reached and the time at which the largest magnitude

correlation occurred – to those expected under two null models: (i) a topological null model that preserved only the number of edges,

their total strength and their degree distribution, and (ii) a spatially embedded null model that preserved the edge distribution, and the

relationship between edge strength and edge distance. Instantiations of the topological null model were generated using the Brain

Connectivity Toolbox (Rubinov and Sporns, 2010). The rewiring algorithm begins by randomly choosing two pairs of edges (i/ j and

k/l) and continues by swapping their origin and termination points (i/k and j/l). Here, we performed 23104 bidirectional edge

swaps per network. Instantiations of the spatially embedded model were generated using code from Roberts et al. (2016). The re-

wiring algorithm begins by calculating the Euclidean distance between the average coordinates of all regions in the Lausanne atlas,

and continues by removing the effect of distance on the mean and variance of the edge weights, randomly rewiring, and then adding

the effect of distance back to the newly rewired graph. For both topological and spatial null model analyses, a new random graphwas

generated for every trial (minimum number of trials was 192). Null models were created from the stabilized rather than raw versions of

the structural matrices, and – in the optimal control analyses –were also scaled by a parameter g to reduce the error of the calculation.

To further explore the role of spatial embedding in optimal control efficiency, we tested two additional null models: (i) a spatially

embedded null model that also preserves the degree distribution, and (ii) a spatially embedded null model that further preserves

the strength sequence. Exemplar spatially embedded null model graphs were generated using code from Roberts et al. (2016). Simi-

larly to the spatially embedded null model described above, all calculations for the additional spatially embedded null model graphs

begin with a calculation of the Euclidean distance between the average coordinates of all regions in the Lausanne atlas. Next, we
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remove the effect of distance on the mean and variance of the edge weights. Pairs of edges are then swapped uniformly at random,

and the effects of distance are added back in to the matrix. While these measures of Euclidean distance ignore the curvilinear char-

acter of white matter tracts, the true fiber length and the Euclidean distance are highly correlated (Roberts et al., 2016). In the strength

distribution preserving null model, both the row and column sums are then iteratively updated to converge to the empirical strength

distribution. The strength sequence preserving null model graph was defined similarly, but with a convergence to the

strength sequence rather than to the strength distribution. The strength distance relationships were then added back into the graph.

More details about these processes can be found in Roberts et al. (2016). For these analyses, a new exemplar null model graph was

generated for every trial (minimum number of trials was 192). Null models were created from stablematrices, scaled by the parameter

g. Examples of null models used in themain text and supplement are shown in Figure S5. Note that with the exception of the randomly

rewired null model, other models look qualitatively similar to empirical connectivity matrices.

Random Forest Models
Random forest models are constructed by averaging predictions over a large number of decision trees (here: 500), where each

branch in the tree splits one of the predictors into two groups, the means of which are used as a predicted value for observations

in each branch (Liaw and Wiener, 2002). Splits are selected to reduce prediction error. Random forest models rely on bootstrapping

data for each split, and a random selection of the variable to split on to avoid overfitting the data. Out-of-bag mean squared error is

calculated as the prediction error of the samples that were not included in bootstrapped selection for each tree, and therefore are

samples that the model has not been trained on (Liaw and Wiener, 2002). For our last analysis, we built a random forest model

that included one global predictor, one regional predictor, and one state predictor. To test the efficacy of this model, we also simu-

lated 1000 null models, where each subject’s true energy on every trial was predicted using predictors from a different subject. All

three predictors came from the same, different subject. One of these predictors (the initial probability) changed on a trial-by-trial ba-

sis, while the others did not. Since subjects have a different number of trials, a bootstrapped sample of probabilities equal to the size

of the true subject’s energy was taken from each randomly matched subject to generate the random probability predictors. Models

were implemented in Rwith the randomForest package (https://cran.r-project.org/web/packages/randomForest/randomForest.pdf)

(Liaw and Wiener, 2002). Five-hundred trees were used with mtry = 1 for each model.

DATA AND SOFTWARE AVAILABILITY

Code for simulations and select metrics is available at https://github.com/jastiso/NetworkControl. Data will be made available upon

request.
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