
Review

Spatial Embedding Imposes Constraints on
Neuronal Network Architectures
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Recent progress towards understanding circuit function has capitalized on
tools from network science to parsimoniously describe the spatiotemporal
architecture of neural systems. Such tools often address systems topology
divorced from its physical instantiation. Nevertheless, for embedded systems
such as the brain, physical laws directly constrain the processes of network
growth, development, and function. We review here the rules imposed by the
space and volume of the brain on the development of neuronal networks, and
show that these rules give rise to a specific set of complex topologies. These
rules also affect the repertoire of neural dynamics that can emerge from the
system, and thereby inform our understanding of network dysfunction in dis-
ease. We close by discussing new tools and models to delineate the effects of
spatial embedding.

Network Topology versus Geometry in Neural Systems
In contemporary neuroscience, increasing volumes of data are being used to answer the question
of how heterogeneous and distributed interactions between neural units might give rise to
complex behaviors. Such interactions form characteristic patterns across multiple spatial scales,
spanning molecules and cells to brain regions and lobes [1]. An intuitive language in which to
describe such interactions is network science, which elegantly represents interconnected sys-
tems as sets of nodes (see Glossary) linked by edges. Nodes often represent proteins, neurons,
subcortical nuclei, or large cortical areas, and edges often represent either (i) structural links in the
form of chemical bonds, synapses, or white matter tracts, or (ii) functional links in the form of
statistical relationsbetweennodalactivity timeseries. Generally, the resultantnetworkarchitecture
can be fruitfully studied using tools from graph theory to obtain mechanistic insights pertinent to
cognition [2], above and beyond those provided by studies of regional activation [3] (Box 1).

In particular, several fundamental questions in neuroscience are quintessentially network
questions concerning the physical relationships between functional units. How does the
physical structure of a circuit affect its function? How does coordinated activity at small spatial
scales give rise to emergent phenomena at large spatial scales? How might alterations in
neurodevelopmental processes lead to circuit malfunction in psychiatric disorders? How might
pathology progressively spread through cortical and subcortical tissue, giving rise to the well-
known clinical presentations of neurological disease? These questions collectively highlight the
fact that the brain – and its multiple networks of interacting units – is physically embedded into a
fixed 3D enclosure. The natural consequences of this embedding include diverse physical
drivers of early connection formation and physical constraints on the resultant adult network
architecture. Understanding the constitution and basal dynamics of the system therefore
requires not only approaches to quantify and predict network topology but also tools, theories,
and methods to quantify and predict network geometry and its role in both enabling and
constraining system function.

Highlights
The physical embedding of neural sys-
tems imposes constraints on the pos-
sible patterns of connections and the
repertoire of functional motifs.

Prominent competing rules guiding the
formation of brain networks include the
minimization of wiring cost, and max-
imizing network efficiency and diversity.
These rules lead to high local clustering
with sparse long-distance connections.

Recent work suggests that intrinsic
functional connectivity varies along
dimensions that are tightly linked to
the spatial embedding of the brain and
to the topological properties that arise in
the presence of spatial constraints.
Similarly, these properties show wide-
spread changes in various diseases.

There is a rich and growing repertoire of
statistics, null models, and generative
models to aid researchers in testing
focused hypotheses about the role of
physical embedding in neural systems.
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In this review we provide evidence to support the notion that consideration of the physical
embedding of the brain will prove crucial for a holistic understanding of neural circuit function.
We focus our comments on the utility of informing this consideration via emerging computa-
tional tools developed for the characterization of spatial networks. Perhaps as a historical
artifact of its origins in mathematics, or its initial applications to abstract informational systems,
network science often addresses the topology of systems in a way that is devoid of clear spatial
characteristics [4]. However, in recent years, the field has steadily developed tools and intuitions
for spatially embedded network systems [5]. In the light of these developments, we begin by

Glossary
Adjacency matrix: an N � N matrix
of a graph, where N is the number of
nodes. Each element Aij of the matrix
gives the strength of the edge
between nodes i and j.
Allometric scaling: in biology this
term refers to the differential
(compared to isometric scaling)
growth of different aspects of
physiology with respect to body size.
We discuss here the allometric
scaling of gray matter volume with
respect to white matter volume,
which is described with a power law.
Cycle: in applied algebraic topology,
this refers to an empty space (or lack
of edges) in a graph surrounded by
all-to-all connected subgraphs of the
same dimension. The dimension here
refers to the number of nodes
included in each all-to-all connected
subgraph.
Edge: from the perspective of graph
theory, an edge refers to a
connection between nodes. From
the perspective of neuroscience, an
edge is a statistical dependency
(functional) or estimated physical
connection (structural) between
nodes.
Geometry: in a network, the
geometry reflects features of a graph
in the context of physical space.
Hub: a central node in the network,
typically having many connections.
Node: from the perspective of graph
theory, the unit where edges connect
in the graph. From the perspective of
neuroscience, a node is a brain
region, neuron, or protein whose
interactions one wishes to
understand.
Topology: the quantification of
features of a graph in the context of
space defined by the graph itself,
without respect to any physical
embedding.

Box 1. Simple Network Statistics

In a network representation of the brain, units ranging from neurons or neuronal ensembles to nuclei and areas are
represented as network nodes, and unit-to-unit interactions ranging from physical connections to statistical similarities
in activity time series are represented as network edges. These connections can have independent topological and
spatial distances (Figure IA). The architecture of the network can be quantitatively characterized using statistics from
graph theory [105]. We mathematically define here some of the topological statistics mentioned elsewhere in this paper
(Figure IB).

Degree and Strength

The degree of a node is the number of connections it has. In a binary graph encoded in the adjacency matrix A, where
two regions i and j are connected if Aij = 1, and not connected if Aij = 0, then the degree ki = 1 is defined as:

ki ¼
X

i;j2N
Ai j ; [I]

where N is the set of all nodes. In a weighted graph, where Aij is the strength of the connection between nodes i and j,
then the strength si is defined as:

si ¼
X

i;j2N
Ai j : [II]

Path Length and Network Efficiency

The term path length frequently refers to the average length of the shortest path in a network. The shortest path between
any two nodes is given by the path requiring the fewest hops. The network efficiency is given by the inverse of the
harmonic mean of the shortest path length. To be precise, we can write the path length of node i as:

Li ¼ 1
n

X

i2N

X
i2N; j 6¼i

di;j

n � 1
; [III]

where di,j is the shortest path length between two nodes and n is the number of nodes.

Clustering Coefficient

The clustering coefficient can be used to quantify the fraction of the neighbors of a node that are also neighbors with
each other. Specifically, the clustering coefficient of node i is given by:

Ci ¼ 1
n

X

i2N

2ti
kiðki � 1Þ; [IV]

where ti is the number of triangles around node i [50]. The clustering coefficient of the network is the average clustering
coefficient of all of its nodes.

Modularity

Although there are several modularity quality functions, the most common is

Q ¼
X

ij

½Aij � gPij �dðcicjÞ; [V]

where Q is the modularity quality index, Pij is the expected number of connections between node i and node j under a
specified null model, d is the Kroenecker delta, and ci indicates the community assignment of node i. The tuning
parameter g ranges from ð0; 1Þ and can be used to tune the average community size.
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recounting observations from empirical studies addressing the question of how brain networks
are embedded into physical space. Next, we discuss the relevance of this spatial embedding to
an understanding of network function and dysfunction. We complement these empirical
discussions with a more technical exposition on the relevant tools, methods, and statistical
approaches to be considered when analyzing brain networks. Finally, we outline open ques-
tions regarding network architecture and circuit function, the answers to which will require a
thorough appraisal of the role of physical space in brain network physiology.

Physical Constraints on Network Topology and Geometry
Diverse processes guide the formation of structural connections in neural systems [6,7].
Evidence from genetics suggests that neurons with similar functions, as operationalized by
similar patterns of gene expression, tend to have more similar connection profiles than neurons
with less similar functions [6,8,9], with the greatest similarity appearing at highly interconnected,
metabolically demanding hubs [10]. Of course, it is important to note that some spatial similarity
in expression profiles is expected because of the influence of spatial gradients of growth factors
during development [6]. However, evidence suggests that interareal connectivity profiles in
rodent brains are even more correlated with gene coexpression than would be expected simply
based on such spatial relationships [8]. This heightened correlation could be partially explained
by observations in mathematical modeling studies that neurons with similar inputs (and
therefore potentially performing similar functions) tend to have more similar connection profiles
than neurons with dissimilar inputs [11].

Nevertheless, although genetic coding and functional utility each play important roles, a key
challenge lies in summarizing the various constraints on connection formation in a simple and

Local topology
(degree, clustering) 

Path, distances Module detec�on,
centrality 

(B)

(A)

Network space Physical space

A -> B

A -> C

A -> D

A -> E

Close

Close

Close

Close

Far

Far

Far

Far

A

y

x

B

E

D

Module 1 Module 2

Hub

A

B

Figure I. Schematic of Network Measures. (A) An illustration of network space (topology) and physical space
(geometry). The network is embedded into a physical space, indicated by the x and y axes. The topological and physical
distances between the nodes are not necessarily related. (B) The network representation enables the calculation of local,
mesoscale, and global features to describe the pattern of connections in topological space (as shown here) as well as the
pattern of connections in physical space (as we describe in the main text). Adapted, with permission, from [1] and [87].
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intuitive theory that can guide future predictions. One particularly acclaimed theory first outlined
by Ramon y Cajal in 1899 [12] is that physical constraints on space, time, and material over
development underlie connection formation. Metabolism related to neural architecture and
function is costly, utilizing 20% of body energy, despite comprising only 2% of its volume [13].
Even the development of axons alone extorts a large material cost [6]. The existence of these
pervasive costs motivated early work to postulate that wiring minimization is a fundamental
driver of connection formation. Consistent with this hypothesis, axons in the brain seem to
occupy a nearly optimal volume to minimize metabolic costs [14]. In addition, the neural
architectures of multiple species [15,16] and at multiple scales [17] across different methods
of data collection [18–20] are predominantly composed of wires extending over markedly short
distances [6,21].

However, mounting evidence suggests that pressures for wiring minimization may compete
against pressures for additional topological complexity [16] that could facilitate efficient com-
munication [22–24]. Early evidence supporting the role of efficient communication came from
the observation that one can fix the network architecture of interareal projections in the
macaque cortex (and later human [22], mouse [9], and dendritic arbors [6,21]), and then
rearrange the location of areas in space to obtain a configuration with significantly lower wiring
cost [23]. Interestingly, for the connections whose length is decreased, most also tend to be
those that shorten the characteristic path length – one of many ways to quantify how efficiently a
network can support communication [23]. Notably, computational models that instantiate both
constraints on wiring and efficient communication produce topologies more similar to the true
topologies than do models that instantiate a constraint on wiring minimization alone [11,25].
Moreover, models that allow for changes in this tradeoff over developmental time-periods
better fit observed connectome growth patterns than prior models, positing a mechanism of
early connection to nearby sources, coupled with later expansion of older densely connected
clusters to create topological diversity [26]. It is worth noting that other properties have been
proposed as drivers in addition to communication efficiency, such as fine-scale chemical
mechanisms of chemotaxis [27] and large-scale mechanisms driving functional diversity via
long-distance connections [28]. Alternatives to the hypothesis that communication efficiency is
a key driver include the preservation of hubs specifically [20].

It is precisely this balance between wiring minimization and communication efficiency that is
thought to produce the complex network topologies observed in neural systems, as well as
markedly precise spatial embedding [29,30]. A simple illustration of this precise embedding lies
in the allometric scaling of white versus gray matter across species [31,32]. To better
understand how this scaling relates to the topology of a single organism, it is useful to consider
methods that can simultaneously (instead of independently) assess topology and geometry.
One such method that has proved to be particularly useful in the study of neural systems from
mice to humans is Rentian scaling, which assesses the efficiency of the spatial embedding of a
network [22,33,34]. Originally developed in the context of computer circuits, Rentian scaling
describes a power-law scaling relationship between the number of nodes in a volume and the
number of connections crossing the boundary of the volume [6,22]. The existence of such a
power law relationship with an exponent known as Rent’s exponent is consistent with an
efficient spatial embedding of a complex topology [35]. In addition, the Rent’s exponent of
connections in the human brain is proportional to the allometric scaling of gray and white matter
volume across species, creating a putative link between the efficient embedding of a single
system and the scaling of connectomes across evolution.
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Reflections of Physical Constraints in Local, Mesoscale, and Global Network
Topology
Across species, the brain consistently exhibits a set of topological features at local (single
regions), meso (neural circuits), and global (entire connectome) scales that can be simply
explained by a few spatial wiring rules [29,36,37]. At the local scale, multiple modalities have
been used to demonstrate that a key conserved topological feature is the existence of hubs, or
nodes of an unexpectedly high degree [38,39]. Such hubs emerge naturally in computational
models in which the location of nodes are fixed in space, and edges between nodes are rewired
to miminize average wiring length and to maximize topological efficiency by minimizing the
average shortest path length (Box 1), although the number and degree of hubs varies
systematically with the relative importance of the two constraints [21,25] (Figure 1). Importantly,
when both constraints are balanced, networks contain several hubs of varying degrees,
consistent with the topology observed in brain networks [25]. In brain networks, hubs tend
to be linked by connections that are longer than expected [40,41], although their exact physical
placement enables low wiring cost given the presence of hubs [42]. It is notable that such
constraints can be implemented within the natural processes of development; for example, in
adult C. elegans, hub neurons have been tracked back to the earliest born neurons in the
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Figure 1. Effect of Wiring Minimization and Communication Efficiency on Network Topology. Networks were
generated by modulating the balance between a constraint on wiring (referred to as a spatial cost) and a constraint on
information routing efficiency (referred to as a temporal cost). The parameter b, which ranges between 0 and 1, tunes this
balance by weighting spatial cost against temporal cost. When b = 0 only the spatial cost is considered, while when b = 1
only the temporal cost is considered. (A) Examples of networks at different values of b when only the spatial constraint
exists (left), when only the temporal constraint exists (right), and when the two constraints are balanced (middle). Root
nodes are shown in green and all other nodes are shown in yellow. (B) Spatial costs (blue) and temporal costs (red) vary as a
function of b. Adapted, with permission, from [21].
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embryo, which accumulate a large number of connections along the normative growth
trajectory [30,43].

At the mesoscale, a key conserved topological feature is modularity, or the existence of
internally dense and externally sparse communities of nodes [29,36,44]. The strength of
modularity in a network is commonly quantified using a modularity quality index (Box 1). In
computational models, this index obtained under pressures of wiring minimization and com-
munication efficiency (quantified with path length) was more similar to that empirically measured
in the connectomes of the macaque and C. elegans than to that obtained under either
constraint separately [7,25]. Again it is notable that such constraints can be implemented
within the natural processes of development; for example, in Drosophila, communities form
when many neurons are born in a similar temporal window, and therefore typically share a
common progenitor type, and thus a similar spatial location and genetic profile [30,45].
Genetically similar neurons being born in close proximity are likely to connect to one another,
forming densely connected functional groups. Spaces between modules can form cavities or
cycles, or intuitively holes in the network, that can be identified with emerging tools from
applied algebraic topology (Box 2) [46]. The locations, prevalence, and weight structure of
these cycles differ markedly between geometric and random networks [47,48], with patterns of
functional connectivity among neurons exhibiting characteristics similar to those observed in
spatially constrained geometric networks [49]. It will be interesting in the future to gain a deeper
understanding of the relations between cycles and modules, and their emergence through the
spatially constrained processes of development.

At the global scale, a key conserved topological feature is small-worldness, or the confluence of
unexpectedly high clustering and short path length (Box 1) [50]. Such architecture is thought to
be particularly conducive to a balance between local information processing within the clusters
and global information transmission across the topologically long-distance connections [51].
Similar to the existence of hubs, modules, and cavities, small-world architecture in a network
can naturally arise from spatial constraints on wiring [52]. Intuitively, clusters tend to form in

Box 2. Applied Algebraic Topology

Although graph theory is a powerful and accessible framework for analyzing complex networks, complementary
information can be gained by using different mathematical formalisms. We describe here an alternative approach to
studying structure in networks that relies on tools developed in the field of applied algebraic topology, specifically
persistent homology [106]. Persistent homology can be used to study intrinsically mesoscale structures called cycles
and cliques [107]. Cliques are all-to-all connected subsets of nodes in a network. The presence of many large cliques
indicates many highly connected units are present in the network [108]. Cycles are looped patterns of cliques which may
enclose a cavity, or topological void, within the network. Cliques and cavities by definition reside within a binary graph;
however, one can expand a weighted network into a sequence of binary graphs via iterative thresholding [49,109]. Then,
using persistent homology one can track the birth, persistence, and death of cavities along this sequence which gives a
holistic insight into the global network (Figure IA).

In random graphs, the numbers of births and deaths across thresholds follow a characteristic pattern [48]. At high
thresholds and low edge density, a few low-dimensional cavities exist, while at low thresholds and high edge density,
more high-dimensional cavities exist (Figure IB) [48,110]. Interestingly, geometric graphs – which can be used to
instantiate spatial constraints on the topology – show a markedly different distribution. There are many low-dimensional
cavities, and fewer cavities with increasing dimension [47,48] (Figure IC). This general pattern has been recapitulated in
functional networks constructed from firing of hippocampal neurons, indicating a geometric rather than a random nature
to neuronal cofiring [49]. Furthermore, the persistent homology of human connectomes [46] and rat microcircuits [108]
is distinct from that expected in a minimally wired null model. In humans, the presence of widespread subcortical
connections leads to more cavities being born at high densities [46], while rat microcircuits display more high-
dimensional cavities in general [108]. Further investigation into how wiring rules shape the topology of neural systems
may shed light on how the spatial embedding of the brain shapes connectivity across scales and species.
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spatially nearby regions to minimize wiring cost, while long-distance connections facilitating
efficient communication tend to form only occasionally owing to their elevated wiring cost [53].
In concert with these empirical observations, computational models that account for wiring
economy produce networks with small-world architectures reminiscent of those observed in
real neural systems [54]. Collectively, these studies demonstrate the influence of parsimonious
wiring rules on complex network topology. Future work could be directed to a better
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Figure I. Applied Algebraic Topology. (A) An illustration of thresholding a weighted network across different
densities (r). At r1 a cavity of dimension 1 is born (shown in yellow), which then dies at r2. (B) The characteristic pattern
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understanding of the aspects of connectome topology that remain unexplained and thus may
arise from more subtle rules [7].

Relevance of Network Geometry for Dynamics and Cognition
Pressures for wiring minimization and communication efficiency can exist alongside devel-
opmental processes that produce non-isotropically structured organs that result in patterning
across multiple overlapping signaling gradients [27]. It is intuitively possible that such pro-
cesses could also explain the observed differences in the network topologies of different
sectors of the brain [55,56], which can impinge on the functions that those sectors are
optimized to perform (Box 3). Indeed, prior work has noted the coexistence of complex
structural topologies and spatial gradients of specific function [57], although it has been
difficult to achieve a mechanistic understanding of exactly how the two relate to one another.
One particularly promising recent line of investigation attempting to link the two mechanisms
has proposed the existence of a set of primary spatial gradients that explains variance in
large-scale connectivity [58,59] (Figure 2A). In both humans and macaques, the primary axis
of variance is bounded on one end by the transmodal default-mode system, and on the other
end by the unimodal sensory systems [59] (Figure 2B). Notably, this gradient is tightly linked to
the geometry of the network, with the regions located at one end having maximal spatial
distances from regions located at the other end [59]. In addition, the regions located at the
peaks of the transmodal gradient have substantial overlap with structural hubs (whose
putative role in the wiring economy has been discussed) in human connectomes
[20,41,60]. Put simply, such evidence supports the notion that the cortex is fundamentally
organized along a dimension of function from concrete to abstract, and that dimension
manifests clearly in the spatial embedding of the network.

Box 3. Control Theory

Network control theory provides a potentially powerful approach for modeling neural dynamics [111]. Hailing from
physics and engineering, network control theory characterizes a complex system as being composed of nodes
interconnected by edges, and then specifies a model of network dynamics to determine how external input affects
the time-varying activity of the nodes [112]. Most studies of network control in neural systems stipulate a linear, time-
invariant model of dynamics:

_x ðtÞ ¼AxðtÞ þ BuðtÞ; [I]

where x is some measure of brain state, A is a structural connectivity matrix, u is the input into the system (exogenous
stimulation, or endogenous input from other brain regions), and B selects the control set, or regions to provide input to
[113]. Assuming this model of dynamics, one can calculate the control energy required to reach specific brain states,
which can be used as a state-dependent measure of the efficiency of control [114]. Control theory can also posit control
metrics that quantify how efficiently a node would drive the brain to various states. Two commonly used metrics are
average controllability and modal controllability [115]. When every node is included in the control set, average
controllability is proportional to the average energy required to drive the node to any state [116]. Conversely, modal
controllability is high in nodes where a small input will result in large perturbations to all eigenmodes of the system, and is
interpreted to be high in nodes that can easily drive the brain to hard-to-reach states [117].

If these properties are important for helping the brain to transition between states, one would expect them not to be
randomly distributed across the cortex but instead to be clustered into spatially constrained, functionally relevant
systems. More specifically, one might expect functional systems that drive the brain to many accessible states, such as
the default-mode system, to have high average controllability, while regions that drive the brain to hard-to-reach,
cognitively demanding states (executive control areas) to have high modal controllability. Data from healthy human
adults support these two hypotheses [117]. Moreover, both average and modal controllability increase across
development and are correlated with cognitive performance generally [118]. The manner in which network control
tracks individual differences reflects the fact that the capacity for a network to enact control is dependent upon its
topology [119]. Further efforts will be necessary to distill exactly how spatial embedding and wiring constraints impinge
on that control capacity, and how this relation is altered in psychiatric disorders [116].
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The specific topology and spatial geometry of brain networks has important implications for the
patterns of neural dynamics that one would expect to observe. Consider, for example, the
patterns of intrinsic activity noted consistently across species, individuals, and imaging modali-
ties in the default-mode system [61]. The consistent architecture of correlations between
regional time-series in this system suggests a role for time-invariant structural features in
organizing these dynamics. Consistent with this suggestion, functional connectivity in the
default mode is more similar to its structural connectivity than other systems [62]. Recent
work addressing the mechanisms of the stable intrinsic activity patterns in the default mode has
posited the existence of so-called ‘lag threads’, or spatial progressions of whole-brain activity
patterns at non-zero time-lags [63]. Notably, regions of the default mode participate in
consistent lag thread motifs, where changes in the activity in one region reliably lead to
changes in the activity of another region [61,63]. It has been postulated that these lag threads,
both within and outside of the default mode, arise from infra-slow oscillations in membrane
potential that travel between cortical layers [64], although further work parsing the relative role
of passive propagation along structural pathways versus active neuromodulation in these
patterns is needed.

In addition to characteristic dynamics of activity across the default mode, the brain also shows
reliable wave-like cortical dynamics in both task and rest conditions that are important for neural
computation [65–67]. Different aspects of these dynamics can be replicated by biophysical
models of neuronal activity that account for the delay of activity propagation across axons,
indicating that connection topology and the distance of connections might be important for
their characteristic spread [68]. Using whole-brain human connectomes, these models can
recreate metastable patterns of waves, sources, and sinks, where such patterns tend to
emanate from hubs in the network more than from non-hubs [69]. Together, these results
support the notion that features of the network topology created by the spatial embedding of
the brain influence the reliable patterns of dynamics observed in the cortex.

Relevance of Network Geometry for Disease
The spatial architecture of brain networks not only impacts our understanding of dynamics and
cognition but also our understanding of neurological disease and psychiatric disorders.
Mounting evidence suggests that many diseases and disorders of mental health can be
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thought of fruitfully as network disorders, where the anatomy and physiology of crossregional
communication can go awry [70]. Intuitively, spatial anisotropies of developmental processes,
or the spatial specificity of pathology, could also explain alterations in the spatial characteristics
of brain networks [71]. Although there are many different neurological diseases with pathologies
related to the spatial embedding of the brain (reviewed in [72]), we will limit our discussion in this
review to epilepsy, a particularly common neurological disease, and to schizophrenia, a
particularly devastating psychiatric disorder.

Despite a diverse pathophysiology but a renitent unifying biological manifestation, epilepsy is
characterized by altered network dynamics in the form of seizures that display spatially
consistent patterns. For example, an ictal period often begins with a marked spatial decorre-
lation followed by a period in which abnormally synchronized activity propagates in consistent
spatial patterns [73,74]. In addition to broad patterns of spatial decorrelation, individual seizures
also show stereotyped patterns of both spiral waves and traveling waves of activity [65,75,76].
In silico studies have demonstrated that a simple adaptive model of synaptically coupled and
spatially embedded excitatory neurons can reproduce many basic features of these wave-
forms, including their speed and the size of the wavefront [75]. However, we have noted that
traveling waves are not unique to epilepsy, and marked differences in wave propagation in
healthy and epileptic cortical tissue suggest that the precise spatial progression is important,
potentially supported by distinct underlying microstructures [77]. Finally, even interictal dynam-
ics are altered in epilepsy, as manifested by marked decreases in average functional connec-
tivity across the brain combined with local increases in functional connectivity and efficiency in
default-mode areas [78,79]. These connectivity patterns have some utility in predicting seizure
spread, but the guiding principles leading to these changes and how they relate to fine-scale
patterns of activity remains unclear [80].

Although its pathophysiology is very distinct from that implicated in epilepsy, schizophrenia is
also a condition marked by severe network disturbances that have broad ramifications for
cognitive function [24,81]. Some of these network alterations appear to selectively affect
connections of particular physical lengths, reflecting an alteration in the spatial embedding
of the network [82]. Specifically, the evidence suggests a reduced hierarchical structure and
increased connection distance in the anatomical connectivity of multimodal cortex in patients
with schizophrenia compared to healthy controls, indicative of less efficient spatial wiring [81].
Moreover, in functional brain networks, patients display longer high-weight connections,
decreased clustering, and increased topological efficiency in comparison to healthy controls
[82]. The lack of strong, short-distance functional connections is in line with evidence from
animal studies suggesting over-pruning of synapses in childhood-onset schizophrenia [82]. In
addition, the location of hubs (with high metabolic cost) coincides tightly with gray matter loss in
schizophrenia [42]. The intuitions gained here from a consideration of spatial network embed-
ding offer important directions for future work linking non-invasive imaging phenotypes with
invasive biomarkers of neural dysfunction in disease.

Statistics, Null Models, and Generative Models
In the previous sections we outlined developmental rules for efficient wiring, and we discussed
the reflections of these rules in spatial patterns of healthy and diseased brain dynamics.
Collectively, the studies reviewed motivate the broader use and further development of
sophisticated and easily implementable tools for the analysis of the spatial embedding of a
network [83]. We outline here the current state of the field in developing effective network
statistics, network null models, and generative network models that account for spatial
embedding.
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Network Statistics
A simple way to examine networkarchitecture in the context of spatial embedding is to incorporate
the Euclidean distance of connections into local, mesoscale, and global statistics [82,84]. Argu-
ably thesimplest local statistics that remainspatiallysensitive arethe momentsof thedistribution of
edge lengths in the network. One can also compute graph metrics that have been extended to
consider space, such as physical network efficiency and physical edge betweenness [85].
Physical network efficiency uses the physically (rather than topologically) shortest path, then
takes the inverse of the harmonic mean of this length, while physical edge betweenness provides
the fraction of shortest physical paths between all node pairs that traverse a given edge [86]. One
could also define a physical clustering coefficient in a similar manner. Finally, one can assess the
system for Rentian scaling as described earlier, providing information on how efficiently the
complex network topology has been embedded into the physical space [22,33,34]. In the context
of neural systems, these spatially informed graph statistics can be used to account for the physical
nature of information processing, propagation, and transmission.

Complementing local and global graph statistics is an assessment of the community structure
of a network, a mesoscale property frequently assessed by considering the existence and
strength of network modules [87]. From that community structure, one can determine the
spatial embedding of communities, for example by assessing their laterality in bilaterally
symmetric systems such as the brain [88,89]. One common way to assess community
structure is to maximize a modularity quality function, which identifies assortative modules
with dense within-module connectivity and sparse between-module connectivity [90] (methods
to identify non-assortative communities are given in [91]). Statistically, this algorithm compares
the strength of observed connections between two nodes in a community to that expected
under a given a null model. The most commonly used null model in this context is the Newman–
Girvan or configuration model, which preserves the strength distribution of the network [90].
However, this null model operationalizes a purely topological constraint – the strength distri-
bution – and does not acknowledge any spatial constraints that may exist in the system. For this
reason, many investigators across scientific domains have begun to develop alternative null
models that account for physical constraints [92–94] on their system of interest.

In the context of brain networks, it is worth considering three distinct null models for modularity
maximization that incorporate information about the physical space of the network embedding.
First, one can directly incorporate the wiring minimization constraint observed in brain networks
by defining a null model with a probability of connection between two nodes that decays
exponentially with distance [92] (Figure 3A,B). Using this model, one can detect different and
more spatially distributed modules than those obtained when one uses the configuration model
[92] (Figure 3C–E). Second, one can employ gravity models [93], which account for the number
of connections expected given a specific distance (typically a power law or inverse of distance)
weighted by the relative importance of each location (typically a quantification of the population
or size of a given location) [93,94]. Third, one can employ radiation models designed to capture
the flow of information between regions, by weighting distance functions by the flux or flow of
each location [94]. Of course, there exists no single correct null model for community detection
that will suit every question in neuroscience. However, we propose that many studies could test
tighter and more targeted hypotheses about community structure in brain networks by using a
null model that accounts for the spatial nature of the brain.

Network Null Models
When considering a network representation of a neural system, one often computes a
statistical quantity of interest and then compares this quantity to that expected in a random
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network null model. If the observed quantity is significantly greater or less than that expected,
one concludes that the network under study shows meaningful architecture of potential
relevance to the biology. Perhaps the most common random network null model is that which
randomly permutes the locations of edges in the network while preserving the number of
nodes, number of edges, and edge weight distribution. However, one may also be interested to
determine whether observed statistics are different from what one would expect simply from
the spatial embedding or wiring rules of the network [40,95,96]. To address these questions,
one can rewire the observed network by conditionally swapping two links if the swap preserves
the mean wiring length of the network [95]. By pairing this model with a reduced null model in
which connections are only swapped if they reduce connection length, one can assess the role
of long-distance connections in the network, which will be preserved in the spatial null but will
not be preserved in the reduced null [95]. In addition to preserving the mean wiring length, one
might also wish to preserve the full edge length distribution by, for example, (i) fitting a function
to the relationship between the mean and variance of edge weights and their distances, (ii)
removing the effect of that relationship from the data, (iii) randomly rewiring the network, and (iv)
adding the effect back into the rewired network [40].

To complement insights obtained from edge-swapping algorithms, one can also construct null
model networks by stipulating a wiring rule a priori while fixing the locations of nodes within the
embedded system. In this vein, studies have fruitfully used null models based on minimum
spanning tree and greedy triangulation methods [97,98]. A minimum spanning tree is a graph
that connects all of the nodes in a network such that the sum of the total edge weights is
minimal. To extend this notion to spatial networks, one can preserve the true geographic
locations of all nodes in the empirical network and compute the minimum spanning tree on the
matrix of Euclidean distances between all node pairs [86]. Representing the opposite extreme is
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the greedy triangulation model, which is particularly relevant for the study of empirical networks
that are planar (lying along a surface) as opposed to non-planar (lying within a volume). In the
context of neural systems, planar or planar-like networks are observed in vasculature, and in
thinned models of cortex that consider a single lamina [99]. To construct a greedy triangulation
null model, one can preserve the true geographic locations of all nodes in the empirical network
and iteratively connect pairs of nodes in ascending order of their distance while ensuring that no
edges cross. After constructing such minimally and maximally wired null models, one can
calculate relative measures of wiring length, physical efficiency, physical betweenness central-
ity, and community structure by normalizing the empirical values to those expected at the two
extremes [86].

Generative Network Models
Generative network models can be used to test hypotheses about the rules guiding network
growth, development, and evolution [100]. Often, an ensemble of generative models are
constructed, and summary graph statistics from the empirical network are compared to
the statistics of each of the generative models with the goal of inferring which wiring rule
was most likely to have produced the observed architecture [11,101,102]. Evidence from such
studies suggests that spatially embedded models tend to more accurately reproduce network
measures of large-scale neural systems than models that do not account for space [101]. One
particularly influential study considered 13 generative models that all incorporated a wiring
probability that increased with distance [102]. Consistent with other work, the authors found
that the model that only included the wiring minimization constraint was unable to recreate
long-distance connections of individual connectomes in humans [7,11,102]. Successive gen-
erative models were then added that attempted to recreate some aspects of topology in
addition to these geometric constraints [102]. The models that performed the best were those
that preserved homophilic attraction such that connections preferentially formed between
nodes that had similar connection profiles [102]. Generative models can also be used to
determine the implicit geometric structure that would give rise to graphs with specific topologi-
cal properties [103], and directly assess how the Euclidean space the network is embedded in
relates to this geometry. Continued advancement of generative network models, and inclusion
of additional biological features such as bilateral symmetry, is an exciting approach to test
mechanistic predictions about how network topology forms in spatially embedded neural
systems.

Concluding Remarks and Future Directions
The spatial embedding of the brain is an important driver of its connectivity, which in turn directly
constrains neural function and by extension behavior. Emerging tools from network science
can be used to assess this spatial architecture, thereby allowing investigators to test more
specific hypotheses about brain network structure and dynamics. While we envisage that the
use of these tools will significantly expand our understanding, it is also important to acknowl-
edge their limitations. In particular, the majority of currently available network tools make the
simplifying assumption that all of the relations of interests are strictly dyadic in nature, and exist
between inherently separable components [104]. In truth, however, features that arise from
spatial embedding can also manifest as continuous or overlapping maps and gradients [57],
motivating the use of tools from applied algebraic topology that can account for non-dyadic
interactions (Box 2). As the field moves forward, we envisage that existing and yet-to-be-
developed tools for characterizing the spatial embedding of brain networks will prove crucial for
our understanding of network processes underlying cognition, and of the alterations to those
processes that accompany disease (see Outstanding Questions).

Outstanding Questions
How do spatially guided developmen-
tal processes constrain the formation
of cycles in brain networks?

What are the aspects of connectome
topology that remain unexplained by
wiring minimization or communication
efficiency, and thus may arise from
more subtle rules?

How do the structural topologies that
arise from physical growth rules sup-
port functional gradients?

What is the precise relationship
between the invariant features of brain
activity and the underlying anatomical
structure?

How does the development of the con-
nectome determine the spatial pro-
gression of activity through the
cortex in health and disease?

To what extent can we link macroscale
structural topology with small-scale
developmental rules?

Can a deeper understanding of con-
nectome development be used to help
to identify new biomarkers for network
diseases?

What additional rules can be incorpo-
rated into generative models of the
brain to recapitulate its topology?

How can frontiers in network science
help characterize non-dyadic relation-
ships in the brain?
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