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Objective: Motor imagery-based brain-computer interfaces (BCIs) use an individual’s ability to
volitionally modulate localized brain activity, often as a therapy for motor dysfunction or to probe
causal relations between brain activity and behavior. However, many individuals cannot learn to
successfully modulate their brain activity, greatly limiting the efficacy of BCI for therapy and for ba-
sic scientific inquiry. Formal experiments designed to probe the nature of BCI learning have offered
initial evidence that coherent activity across spatially distributed and functionally diverse cognitive
systems is a hallmark of individuals who can successfully learn to control the BCI. However, little
is known about how these distributed networks interact through time to support learning.
Approach: Here, we address this gap in knowledge by constructing and applying a multimodal net-
work approach to decipher brain-behavior relations in motor imagery-based brain-computer interface
learning using magnetoencephalography. Specifically, we employ a minimally constrained matrix de-
composition method – non-negative matrix factorization – to simultaneously identify regularized,
covarying subgraphs of functional connectivity, to assess their similarity to task performance, and
to detect their time-varying expression.
Main Results: We find that learning is marked by diffuse brain-behavior relations: good learners
displayed many subgraphs whose temporal expression tracked performance. Individuals also dis-
played marked variation in the spatial properties of subgraphs such as the connectivity between
the frontal lobe and the rest of the brain, and in the temporal properties of subgraphs such as the
stage of learning at which they reached maximum expression. From these observations, we posit
a conceptual model in which certain subgraphs support learning by modulating brain activity in
sensors near regions important for sustaining attention. To test this model, we use tools that stipu-
late regional dynamics on a networked system (network control theory), and find that good learners
display a single subgraph whose temporal expression tracked performance and whose architecture
supports easy modulation of sensors located near brain regions important for attention.
Significance: The nature of our contribution to the neuroscience of BCI learning is therefore both
computational and theoretical; we first use a minimally-constrained, individual specific method of
identifying mesoscale structure in dynamic brain activity to show how global connectivity and in-
teractions between distributed networks supports BCI learning, and then we use a formal network
model of control to lend theoretical support to the hypothesis that these identified subgraphs are
well suited to modulate attention.

INTRODUCTION

Both human and non-human animals can learn to voli-
tionally modulate diverse aspects of their neural activity
from the spiking of single neurons to the coherent activity

of brain regions [36, 98, 99]. Such neural modulation is
made possible by routing empirical measurements of the
user’s neural activity to a screen or other external display
device that they can directly observe [41, 75, 98]. Re-
ferred to as a brain-computer interface (BCI), this tech-

Page 1 of 22 AUTHOR SUBMITTED MANUSCRIPT - JNE-103343.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

A
cc

ep
te

d 
M

an
us

cr
ip

t



2

nology can be used not only to control these external
devices, but also to causally probe the nature of specific
cognitive processes [6, 81, 88], and offers great promise in
the treatment of neural dysfunction [71, 89, 111]. How-
ever, translating that promise into a reality has proven
difficult [1, 50, 103] due to the extensive training that
is required and due to the fact that some individuals
who undergo extensive training will only achieve moder-
ate control [27, 56, 75]. A better understanding of the
neural processes supporting BCI learning is an impor-
tant first step towards the development of BCI therapies
and the identification of specific individuals who are good
candidates for treatment [27, 56].

While BCIs vary widely in their nature, we focus on
the common motor imagery based BCIs where subjects
are instructed to imagine a particular movement to mod-
ulate activity in motor cortex. Performance on motor
imagery based BCIs has been associated with a diverse
array of neural features, demographic factors, and be-
havioral measures [3, 47, 52, 56, 62]. Neural features
predicting performance are frequently identified in ar-
eas associated with either performing or imagining ac-
tion; for example, better performance is associated with
higher pre-task activity in supplementary motor areas
[48] and larger grey matter volume in somatomotor re-
gions [48]. Interestingly, performance has also been pre-
dicted by activity in a diverse range of other cognitive
systems relevant for sustained attention, perhaps due to
the high cognitive demands associated with BCI learning
[56]. Specifically, better performance is associated with
greater parietal power suppression in the α band, mid-
line power suppression in the β band, and frontal and
occipital activation with motor power suppression in the
γ band [3, 37, 43]. The role of sustained attention in BCI
control is corroborated by the fact that personality and
self-report measures of attention predict successful learn-
ing [51]. The heterogeneity of predictors suggests the
possibility that individual differences in the interactions
between cognitive systems necessary for action, action
planning, and attention might explain the idiosyncratic
nature of BCI control, although these interactions are
challenging to quantify [6, 29].

Assessing the interactions between cognitive systems
has historically been rather daunting, in part due to
the lack of a common mathematical language in which
to frame relevant hypotheses and formalize appropriate
computational approaches. With the recent emergence
and development of network science [79], and its appli-
cation to neural systems [16], many efforts have begun
to link features of brain networks to BCI learning specif-
ically and to other types of learning more generally. In
this formal modeling approach [9], network nodes repre-
sent brain regions or sensors and network edges repre-
sent statistical relations or so-called functional connec-
tions between regional time series [30]. Recent studies
have demonstrated that patterns of functional connec-
tions can provide clearer explanations of the learning
process than activation alone [8], and changes in those

functional connections can track changes in behavior [5].
During BCI tasks, functional connectivity reportedly in-
creases within supplementary and primary motor areas
[50] and decreases between motor and higher-order as-
sociation areas as performance becomes more automatic
[24]. Data-driven methods to detect putative cognitive
systems as modules in functional brain networks have
been used to demonstrate that a particularly clear neu-
ral marker of learning is reconfiguration of the network’s
functional modules [61, 68]. Better performance is ac-
companied by flexible switching of brain regions between
distinct modules as task demands change [7, 40, 87].

While powerful, such methods for cognitive system de-
tection are built upon an assumption that limits their
conceptual relevance for the study of BCI learning.
Specifically, they enforce the constraint that a brain re-
gion may only affiliate with one module at a time [60],
in spite of the fact that many regions, comprised of het-
erogeneous neural populations, might participate in mul-
tiple neural processes. To address this limitation, recent
efforts have begun to employ so-called soft-partitioning
methods that detect coherent patterns in mesoscale neu-
ral activity and connectivity [19, 32, 60, 67]. Common
examples of such methods are independent component
analysis and principal component analysis, which impose
pragmatic but not biological constraints on the orthogo-
nality or independence of partitions. An appealing alter-
native is non-negative matrix factorization (NMF), which
achieves a soft partition by decomposing the data into the
small set of sparse, overlapping, time-varying subgraphs
that can best reconstruct the original data with no re-
quirement of orthogonality or independence [66]. Pre-
vious applications of this method to neuroimaging data
have demonstrated that the detected subgraphs can pro-
vide a description of time varying mesoscale activity that
complements descriptions provided by more traditional
approaches [60]. For example, some subgraphs identified
with NMF during the resting state have similar spatial
distributions to those found with typical module detec-
tion methods, while others span between modules [60].
As a minimally constrained method for obtaining a soft
partition of neural activity, NMF is a promising candi-
date for revealing the time-varying neural networks that
support BCI learning.

Here, we investigate the properties of dynamic func-
tional connectivity supporting BCI learning. In individ-
uals trained to control a BCI, we use a wavelet decompo-
sition to calculate single trial phase-based connectivity in
magnetoencephalography (MEG) data in three frequency
bands with stereotyped behavior during motor imagery:
α (7-14 Hz), β (15-30 Hz), and γ (31-45 Hz) (Fig. 1, step
1). We construct multimodal brain-behavior time series
of dynamic functional connectivity and performance, or
configuration matrix (Fig. 1, step 2 and 3), and ap-
ply NMF to those time series to obtain a soft partition
into additive subgraphs [66] (Fig. 1, step 4). We deter-
mine the degree to which a subgraph tracks performance
by defining the performance loading as the similarity be-
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tween each subgraph’s temporal expression and the time
course of task accuracy (Fig. 1, step 5). We first identify
subgraphs whose performance loading predicted the rate
of learning and then we explore the spatial and tempo-
ral properties of subgraphs to identify common features
across participants. We hypothesize that subgraphs pre-
dicting learning do so by being structured and situated
in such a way as to easily modulate patterns of activity
that support sustained attention, an important compo-
nent of successful BCI control [56]. After demonstrating
the suitability of this approach for our data (Fig. S1A-
B), we test this hypothesis by capitalizing on recently
developed tools in network control theory, which allowed
us to operationalize the network's ability to activate sen-
sors located near regions involved in sustained attention
as the energy required for network control [45]. Collec-
tively, our efforts provide a network-level description of
neural correlates of BCI performance and learning rate,
and a formal network control model that explains those
descriptions.

METHODS

Participants

Written informed consent was obtained from twenty
healthy, right-handed subjects (aged 27.45 ± 4.01 years;
12 male), who participated in the study conducted in
Paris, France. Subjects were enrolled in a longitudinal
electroencephalography (EEG) based BCI training with
simultaneous MEG recording over four sessions, spanning
2 weeks. All subjects were BCI-naive and none presented
with medical or psychological disorders. The study was
approved by the ethical committee CPP-IDF-VI of Paris.

BCI task

Subjects were seated in a magnetically shielded room,
at a distance of 90 cm from the display screen. Subjects’
arms were placed on arm rests to facilitate stability. BCI
control features including EEG electrode and frequency
were selected in a calibration phase at the beginning of
each session, by instructing the subjects to perform mo-
tor imagery without any visual feedback.

The BCI task consisted of a standard 1 dimensional,
two-target box task [110] in which the subjects modu-
lated their EEG measured α [8-12 Hz] and/or β [14-29
Hz] activity over the left motor cortex to control the ver-
tical position of a cursor moving with constant veloc-
ity from the left side of the screen to the right side of
the screen. The specific sensor and frequency selected to
control the BCI were based on brain activity recorded
during a calibration phase before each day of recording.
Here, subjects were instructed to perform the BCI task,
but received no visual feedback; specifically, the target
was present on the screen, but there was no ball moving

towards the target. Each subject completed 5 consecu-
tive runs of 32 trials each for the calibration phase. The
EEG features (sensor and frequency) with the largest R-
squared values for discriminating motor imagery condi-
tions from rest conditions were used in the subsequent
task.

Both cursor and target were presented using the soft-
ware BCI 2000 [93]. To hit the target-up, the subjects
performed a sustained motor imagery of their right-hand
grasping and to hit the target-down they remained at
rest. Some subjects reported that they imagined grasp-
ing objects while others reported that they simply imag-
ined clenching their hand to make a fist. Each trial lasted
7 s and consisted of a 1 s inter-stimulus interval, followed
by 2 s of target presentation, 3 s of feedback, and 1 s
of result presentation (Fig 2a). If the subject success-
fully reached the target, the target would change from
grey to yellow during the 1 s result section. Otherwise it
would remain grey. The feedback portion was the only
part of the trial where subjects could observe the effects
of their volitional modulation of motor region activity.
Specifically, the subjects saw the vertical position of the
cursor change based on their neural activity, as it moved
towards the screen at a fixed velocity. Brain activity was
updated every 28 ms. In the present study, we there-
fore restricted our analysis to the feedback portion of the
motor imagery task because we were interested in the
neural dynamics associated with learning to volitionally
regulate brain activity rather than in the neural dynam-
ics occurring at rest.

Subjects completed 4 sessions of this BCI task, where
each session took place on a different day within two
weeks. Each session consisted of 6 runs of 32 trials each.
Each trial had either a target in the upper quadrant of the
screen, indicating increased motor imagery was needed to
reach it, or a target in lower quadrant of the screen, in-
dicating no change in activity was needed to reach it.
Only signals from the motor imagery trials were ana-
lyzed. This left us with, before trial rejection due to
artifacts, 16 motor imagery trials × 6 runs × 4 sessions,
or 384 trials per subject. Each trial was 7 seconds in
duration, leading to 3 minute long runs. Combined with
the training phase, each session was 1-1.5 hours total.

Neurophysiological Recordings Data

Recording

MEG and EEG data were simultaneously recorded
with an Elekta Neuromag TRIUX machine (MEG) and
a 74 EEG-channel system (EEG). While EEG and MEG
data were recorded simultaneously, only MEG were an-
alyzed because they are less spatially smeared than
EEG signals, and therefore more appropriate for network
analyses[26]. Signals were originally sampled at 1000 Hz.
We also recorded electromyogram (EMG) signals from
the left and right arm of subjects, electrooculograms,
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FIG. 1. Schematic of non-negative matrix factorization. (1) MEG data recorded from 102 gradiometers is segmented
into windows (t1, t2, t3, t4, ... tn) that each correspond to the feedback portion of a single BCI trial. (2) A Morlet wavelet
decomposition is used to separate the signal into α (7-14 Hz), β (15-30 Hz), and γ (31-45 Hz) components. (3) In each window,
and for each band, functional connectivity is estimated as the weighted phase-locking index between sensor time series. Only
one band is shown for simplicity. The subject’s performance on each trial is also recorded. (3) The lower diagonal of each
trial (highlighted in grey in panel (3)) is reshaped into a vector, and vectors from all trials are concatenated to form a single
configuration matrix. The subject’s time-varying performance forms an additional row in this configuration matrix. This
matrix corresponds to A in the NMF cost function. (5) The NMF algorithm decomposes the configuration matrix (composed
of neural and behavioral data) into m subgraphs with a performance loading (where m is a free parameter), with three types
of information: (i) the weight of each edge in each subgraph, also referred to as the connection loading (viridis color scale), (ii)
the performance loading (purple color scale) and (iii) the time varying expression of each subgraph (black line graphs). The
performance loading indicates how similar the time-varying performance is to each subgraph’s expression. The connections and
performance loadings together comprise W in the NMF cost function, and the temporal expression comprises H. (6) Across
bands and subjects, we then group subgraphs by their ranked performance loading for further analysis.

and electrocardiograms. EMG activity was manually in-
spected to ensure that subjects were not moving their
forearms during the recording sessions. If subjects did
move their arms, those trials were rejected from further
analyses.

Preprocessing

As a preliminary step, temporal Signal Space Separa-
tion (tSSS) was performed using MaxFilter (Elekta Neu-
romag) to remove environmental noise from MEG activ-
ity. All signals were downsampled to 250 Hz and seg-
mented into trials. ICA was used to remove blink and
heartbeat artifacts. An FFT of the data from each sub-
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ject was inspected for line noise, although none was found
in the frequency bands studied here. We note that the
frequency of the line noise (50 Hz) was outside of our
frequency bands of interest. In the present study, we re-
stricted our analyses to gradiometer sensors. Gradiome-
ters sample from a smaller area than magnetometers,
which is important for ensuring a separability of nodes by
network models [17]. Furthermore, gradiometers are typ-
ically less susceptible to noise than magnetometers [39].
We combined data from 204 planar gradiometers in the
voltage domain using the ‘sum’ method from Fieldtrip’s
ft combine planar() function, resulting in 102 gradiome-
ters (http://www.fieldtriptoolbox.org/).

Connectivity Analysis

To estimate phase-based connectivity, we calculated
the weighted phase-locking index (wPLI) [107]. The
wPLI is an estimate of the extent to which one signal
consistently leads or lags another, weighted by the imag-
inary component of the cross-spectrum of the two signals.
Using phase leads or lags allows us to take zero phase lag
signals induced by volume conduction and to reduce their
contribution to the connectivity estimate, thereby ensur-
ing that estimates of coupling are not artificially inflated
[107]. By weighting the metric by the imaginary com-
ponent of the cross spectrum, we enhance robustness to
noise [107]. Formally, the wPLI between two time series
x and y is given by

φ(x, y) =
|E{imag(Γxy)}|
E{|imag(Γxy)|}

, (1)

where E{} denotes the expected value across estimates
(here, centered at different samples), Γxy denotes the
cross spectrum between signals x and y, and imag() se-
lects the imaginary component.

We first segment MEG data from gradiometers into 3
second trials, sampled at 250 Hz. The cross spectrum
is then estimated using wavelet coherence [65] in each
of three frequency bands of interest (α 7-14 Hz, β 15-
30 Hz, and γ 31-45 Hz), with wavelets centered on each
timepoint. We chose to compute the wavelet coherence –
rather than Welch’s method – it does not assume station-
arity of the signal [65]. We implemented the procedure in
the Fieldtrip package in MATLAB, with a packet width
of 6 cycles and zero-padding up to the next power of two
(‘nextpow2’). We then calculate the wPLI as the mean
of the imaginary component of the cross spectrum, di-
vided by the imaginary component of the mean of the
cross spectrum.

We then construct a network model of these statistical
relationships where sensors (N = 102) are nodes, and the
weight of the edge between node i and node j is given by
the weighted phase-locking value. The graph, G, com-
posed of these nodes and edges is a weighted, undirected
graph that is encoded in an adjacency matrix A. By con-
structing this network model, we can use statistics from

graph theory and computational approaches from control
theory to quantify the structure of inter-sensor functional
relations [6, 9].

Uniformly Phase Randomized Null Model

In order to ensure that our results are not due
to choices in preprocessing, the time invariant cross-
correlation of neural signals, or the autocorrelation of
neural signals, we repeated all of the preprocessing and
analysis steps with a uniformly phase randomized null
model [53]. To enhance the simplicity and brevity of the
exposition, we will also sometimes refer to this construct
simply as the null model. Surrogate data time series from
the null model were calculated using a custom function in
MATLAB. Essentially, the FFT of the raw data is taken,
the same random phase offset is added to every channel,
and then the inverse FFT is taken to return the signal
to the time domain [102]. Mathematically, this process
is achieved by taking the discrete Fourier transform of a
time series yv:

Y (u) =
V−1∑
v=0

yve
i2πuv/V , (2)

where V is the length of the time series, v indexes time,
and u indexes frequencies. We then multiply the Fourier
transform by phases chosen uniformly at random before
transforming back to the time domain:

yv =
1√
V

V−1∑
v=0

eiau |Y (u)| e−i2πkv/V , (3)

where the phase at ∈ [0, 2π).

Construction of a Multimodal Configuration Matrix

In this work, we wished to use a data-driven matrix
decomposition technique to identify time-varying sub-
graphs of functional connectivity that support learning.
Specifically, for each subject and each frequency band,
we created a multimodal configuration matrix of edge
weights and BCI performance over time, prior to sub-
mitting this matrix to a decomposition algorithm that
we describe in more detail below (Fig. 1, step 4). We
made separate matrices for each frequency band rather
than concatenating them into a single matrix because
it is easier for the NMF algorithm to converge if there
are more time points relative to the number of edges. To
construct the matrix, we first vectorize the upper triangle
(not including the diagonal) of each trial’s connectivity
matrix, and then we concatenate all of the vectors and
our one performance measure into an E×τ matrix, where
τ is the number of trials (384, if no trials were removed),
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and E is the number of edges (5151) plus the number
of behavioral measures (1). This concatenation process
results in a 5152 × 384 multimodal (brain-behavior) ma-
trix. In this task, each subject’s performance is recorded
as their percentage of successful trials (out of 32) on each
run. This measure includes both motor imagery trials,
where the target was located in the upper quadrant of
the screen, and rest trials where the target was located
in the lower quadrant of the screen. Because this measure
was averaged over trials but the connectivity was calcu-
lated on individual trials, we interpolate the performance
time series to obtain a graded estimate of the percentage
of correct trials that is τ time points long. The perfor-
mance vector is then normalized to have the same mean
as the other rows of the configuration matrix.

Non-negative Matrix Factorization

We used a data-driven matrix decomposition method
– non-negative matrix factorization (NMF) – to iden-
tify time-varying groups of neural interactions and be-
havior during BCI learning [66]. Intuitively, NMF de-
composes a matrix into a set of additive subgraphs with
time-varying expression such that a linear combination
of these subgraphs weighted by temporal expression will
recreate the original matrix with minimal reconstruction
error [60, 66]. The NMF algorithm can also be thought
of as a basis decomposition of the original matrix, where
the subgraphs are a basis set and the temporal coeffi-
cients are basis weights. Unlike other graph clustering
methods [80], NMF creates a soft partition of the orig-
inal network, allowing single edges to be a part of mul-
tiple subgraphs. Additionally, unlike other basis decom-
position methods [4, 23], NMF does not impose harsh
constraints of orthogonality, or independence of the sub-
graphs; it simply finds the most accurate partition, given
that the original matrix is non-negative. In many sys-
tems (including those whose edges reflect phase-locking),
the non-negativity constraint is not difficult to satisfy;
moreover, this constraint is particularly relevant to the
study of physical systems, where the presence of a nega-
tive edge weight can be difficult to interpret.

Formally, the NMF algorithm will approximate an
E × T configuration matrix Â by the multiplication of
two matrices: W, the subgraph matrix with dimensions
E × m, and H, with dimensions m × T . The matri-
ces A, W, and H are shown in Fig. 1, steps 4 and 5.
Here, E is the number of time varying processes (behav-
ior and functional connections derived from MEG data),
T is the number of time points, and m is the number of
subgraphs. Details of how we solve for W and H, as well
as parameter selection can be found in the Supplemental
Materials.
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FIG. 2. BCI task and performance. (A) Schematic of the
BCI task. First the target, a grey bar in the upper or lower
portion of the screen, was displayed for 1 s. Next, the subjects
have a 3 s feedback period, where the vertical position of the
cursor is determined by their neural activity while it moves
horizontally at a fixed velocity. This portion corresponds to
the analysis window, indicated with a grey bar in the figure.
The result is then displayed for 1 s. If the subject reached
the target, it will turn yellow; otherwise it will remain grey.
There is a 1 s intertrial interval (ITI) between trials where
nothing is displayed on the screen. This sequence is repeated
32 times per run, with 6 runs per session. (B) Each subject’s
average performance across four days within two weeks. BCI
Score is the percentage of correct trials during that session.

Subgraph Inclusion

Most subgraphs are sparse, with distributions of tem-
poral coefficients skewed towards zero (see Fig. S4).
However, for every subject and every frequency band, one
subgraph showed very little regularization (no edges were
equal to 0) and had a uniform, rather than skewed dis-
tribution of temporal coefficients. These subgraphs are
clear outliers from the others, and appear to be captur-
ing global phase-locking across the entire brain, rather
than any unique subsystem. To answer this question
about the time varying interactions between neural sys-
tems, we were particularly interested in differences be-
tween the subgraphs that were spatially localized, having
edges regularized to zero. Because including these outlier
subgraphs would obscure those differences, we removed
these subgraphs from all further analyses.
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Group Average Subgraphs

After applying NMF to the multimodal brain-behavior
matrix, we next turned to a study of the nature of the
detected subgraphs after ranking them by performance
loading. Specifically, we were initially interested in de-
termining which edges contributed to each ranked sub-
graph most consistently across the population. For this
purpose, we used a consistency based approach to cre-
ate a group representative subgraph for each ranked sub-
graph [92]. In this procedure, each subject’s subgraph
was first thresholded to retain only the 25% strongest
connections (see Fig. S5 for evidence that results are ro-
bust to variations in this choice). We then constructed
an average N × N subgraph G, where N is the num-
ber of channels and where each element Gij quantifies
how many subjects (out of 20) displayed an edge be-
tween region i and region j in their thresholded sub-
graph. In addition to visually depicting these group
representative subgraphs, we also wished to summarize
their content in spatial bins. It is important to note
that without source reconstruction, meaningful inference
about which anatomical regions correspond to which sen-
sors is extremely difficult [82]. We therefore binned
edges into 10 anatomically defined areas using mon-
tages obtained from BrainStorm [101] software (neuroim-
age.usc.edu/brainstorm/Tutorials/MontageEditor). For
parsimony, and acknowledging the limits of anatomical
inference from sensor data, we refer to each of these bins
as a different lobe (frontal, motor, parietal, occipital, and
temporal) in a given hemisphere (Fig. S9).

Optimal Control

Our final broad goal was to provide a theoretical ex-
planation for why certain networks support BCI learning.
We hypothesized that these regularized networks might
have structures that make it easier for the brain to mod-
ulate the patterns of activity that are necessary for BCI
control. This hypothesis motivated us to formulate and
validate a model to explain how the sparse statistical re-
lationships characteristic of each subgraph could support
the production of brain activity patterns implicated in
BCI learning [11, 44]. Additionally, this model should
account for the brain’s ability to reach these patterns of
activity in the context of the BCI task, where there is
increased volitional modulation of the left motor cortex.
Here, we use tools from network control theory to sat-
isfy these conditions [84]. Specifically, we characterize
the theoretical brain activity at each sensor as a vector
x(t), and we use the adjacency matrix A of a subgraph
to quantify the ease with which that activity can affect
other regions. We then incorporate volitional input con-
trol as input into the brain (u(t)) at a specific region
(given by B). Then, by stipulating

ẋ(t) = Ax(t) + Bu(t), (4)

we model the linear spread of activity along the connec-
tions in A in the context of input to regions given in
B. We note that these dynamics are simple, and we do
not expect them to fully capture the richness of observed
signals; nevertheless, simple models have the notable ad-
vantages of interpretability and flexibility.

With this model of network dynamics, optimal control
trajectories can be formalized and identified by develop-
ing a cost function that seeks to minimize two terms: (i)
the distance of the current state from the target state
and (ii) the energy required for control. Specifically, we
solve the following minimization problem:

min
u

∫ T

0

(xT − x(t))T (xT − x(t)) + ρuκ(t)Tuκdt,

s.t. ẋ = Ax(t) + Bu(t), x(0) = x0, and x(T ) = xT ,

(5)

where ρ is a free parameter that weights the input con-
straint, xT is the target state, and T is the control hori-
zon, which is a free parameter that defines the finite
amount of time given to reach the target state. Dur-
ing BCI control, there is specific, targeted control to a
specific area of the brain (here, the left motor cortex) in
addition to other ongoing control and sensory processes.
We wished for our selection of the input matrix B to
reflect this richness and also allow for computationally
tractable calculations of optimal control, which is diffi-
cult for sparse control sets. Therefore, we constructed
the input matrix B so as to allow input that was domi-
nated by the BCI control site, while maintaining minor
contributions from other areas. More specifically, rather
than being characterized by binary state values, chan-
nels other than the one located over left motor cortex
were given the smallest non-zeros value that assured low
error calculations, approximately 5 × 10−5 at their cor-
responding diagonal entry in B. See Supplement for the
full derivation from [44].

It is important to note that in general the tools from
linear controllability theory are not applicable to the
functional networks commonly derived from neuroimag-
ing data for two reasons. The first reason is that the
model which the tools are built upon stipulates a time-
dependent propagation of activity along edges; such a
propagation is physically true for structural connections
derived from white matter, but is not generally true for
other types of connections used in network models, such
as morphometric similarity or most common functional
connectivity measures. The second reason is that the
model assumes that interactions between nodes ‘a’ and
‘c’ are not due to node ‘b’, an assumption that is violated
by measures of statistical similarity such as the Pearson
correlation coefficient which is the measure of functional
connectivity most commonly employed in neuroimaging
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studies. Because we are using neither structural connec-
tivity nor common measures of functional connectivity,
it was necessary for us to first prove that the networks
we are studying are consistent with our model. To ad-
dress the first point regarding the propagation of activ-
ity along edges, we demonstrate that the structure of the
subgraphs used have utility in predicting empirical brain
state transitions, and that the relative contribution of
each subgraph is related to its temporal expression (Fig.
S1C-D). It is only in light of these validations that we
are able to interpret our results as a potential model for
driving brain activity. To address the second point re-
garding isolation of pairwise relations not due to third
party effects, we note that the matrix A that we study
reflects statistical similarity in phase after strict regular-
ization that removes redundant statistical relationships
(Fig. S1A-B).

Target state definition

A central hypothesis in this work is that certain reg-
ularized subgraphs are better suited to drive the brain
to patterns of activity that are beneficial for BCI control
than others. To test this hypothesis, we create target
states that reflect these beneficial patterns, based on pre-
vious literature. Target states for motor imagery and at-
tention are obtained for each band individually from ref-
erences [3, 37, 43], and can be briefly described as follows:
α contralateral motor suppression for motor imagery and
parietal suppression for attention, β contralateral motor
suppression and ipsilateral motor activation for motor
imagery and vertex suppression for attention, and γ con-
tralateral motor activation for motor imagery and motor
cortex suppression with frontal and occipital activation
for attention (Fig. S10). While acknowledging the limits
of anatomical inference from sensor data, we sought to
approximate these true functional systems at the sensor
level by dividing channels into lobes using standard mon-
tages provided by Brainstorm [101] software (neuroim-
age.usc.edu/brainstorm/Tutorials/MontageEditor). The
target state of channels in brain regions where we did
not have specific hypotheses for their activity were set
to zero; the target state of channels with activation were
set to 1 and that of channels with deactivation were set
to -1. Initial states were set to 0 for all channels. We
then calculate the optimal energy (using the optimal con-
trol equation described above) required to reach each of
these target states to test the hypothesis that subgraphs
that support learning will have lower energy requirements
than those that do not.

Statistical Analyses

Much of our analyses involve testing differences in
distributions across subjects for different subgraphs
or sessions, both for phase-randomized and empirical

data. We also compare these distributions to subject
learning rate defined as the slope of performance over
time. For the results displayed in Fig. 2 here in the
main manuscript, we used a repeated measures ANOVA
to test for the presence of a main effect across conditions
given that the distributions of performances were normal
(see Fig. S11). In Fig. 3 here in the main manuscript,
we sought to associate learning rate with ranked per-
formance loading. After plotting quantile-quantile plots
(see Fig. S12-S14) for the learning rate, and each of the
performance loadings, it became clear that the lowest
loadings were not normally distributed. Therefore, we
used a linear model combined with non-parametric test-
ing utilizing 5000 permutations (lmPerm package in R
https://cran.r-project.org/web/packages/lmPerm).
Standardized coefficients were calculated us-
ing the lm.beta package in R (https://cran.r-
project.org/web/packages/lm.beta/lm.beta.pdf). We
use a Bonferroni correction to control false positive
errors due to multiple comparisons across all 6 pre-
dictors (α = 0.008). To obtain an estimate of how
sensitive our results are to our specific sample, we also
plot summary statistics from 500 models obtained from
bootstrapping a sample of equal size (N = 60, 3 band
and 20 subjects). To examine differences in consistency
(Fig. 4 here in the main manuscript), we use a linear
model (consistency ∼ band + dataType + rank) to
test for a main effect of data type (null or empirical),
band, and subgraph on consistency (see Fig. S15). We
next sought to determine if different subgraphs had
consistently different temporal expression for null and
empirical data (Fig. 5 here in the main manuscript).
We also used a repeated measures ANOVA to test for a
main effect of subgraph across bands, and paired t-tests
to test for differences amongst individual subgraphs
(Fig. S16). Lastly, for the results shown in Fig. 6 here
in the main manuscript, we test the relationship between
learning rate and optimal control energy differences for
several different models. Pearson’s correlations were
used, given that the data appears normally distributed
and has few outliers (see Fig. S17-S20).

Data and Code

Code for analyses unique to this manuscript are avail-
able at github.com/jastiso/netBCI. Code for the NMF al-
gorithm and the NMF parameter selection is available at
github.com/akhambhati/Echobase/tree/master/Echobase
/Network/Partitioning/Subgraph. Code for
optimal control analyses is available at
github.com/jastiso/NetworkControl. Data neces-
sary to reproduce each figure will be made available
upon request.
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RESULTS

BCI Learning Performance

Broadly, our goal was to examine the properties of
dynamic functional connectivity during BCI learning,
and to offer a theoretical explanation for why a certain
pattern of connectivity would support individual differ-
ences in learning performance. We hypothesized that de-
composing dynamic functional connectivity into additive
N ×N subgraphs would reveal unique networks that are
well suited to drive the brain to patterns of activity as-
sociated with successful BCI control. We use MEG data
from 20 healthy adult individuals who learned to control
a motor-imagery based BCI over four separate sessions
spanning a two week period. Consistent with prior re-
ports of this experiment [24], we find a significant im-
provement in performance across the four sessions (one-
way ANOVA F (3, 57) = 13.8, p = 6.8−7) (Fig. 2). At
the conclusion of training, subjects reached a mean per-
formance of 68%, which is above chance (approximately
55 - 60%) level for this task [77].

Dynamic patterns of functional connectivity
supporting performance

To better understand the neural basis of learning per-
formance, we detected and studied the accompanying
patterns of dynamic functional connectivity. First, we
calculated single trial phase-based connectivity in MEG
data in three frequency bands: α (7-14 Hz), β (15-25 Hz),
and γ (30-45 Hz). We then used non-negative matrix fac-
torization (NMF) – a matrix decomposition method – to
separate the time-varying functional connectivity into a
soft partition of additive subgraphs. We found that the
selected parameters led to an average of 7.4 subgraphs,
with a range of 6 to 9, and that all frequency bands had
a decomposition error lower than 0.47 (mean α error =
0.352, mean β error = 0.379, mean γ error = 0.465) (Fig.
S2). The error is the Frobenius norm of the squared dif-
ference between our observed and estimated connectivity
matrices (with dimensions 5152 × 384) and takes values
between 0 and 1. For each band, the error value is low,
giving us confidence that we have fairly accurately recon-
structed relevant neural dynamics. To determine whether
any properties of the identified subgraphs were trivially
due to preprocessing choices, NMF parameters, or time-
invariant autocorrelation in neural activity, we repeated
the full decomposition process after permuting the phases
of all time series uniformly at random. We found that
the statistics of subgraph number and decomposition er-
ror were similar for the uniformly phase randomized data,
indicating that any differences in subgraph and tempo-
ral expression between null and empirical data is not due
to the NMF algorithm’s inability to find a good decom-
position, but rather due to the structure of the chosen
decomposition (Fig. S2).

We quantified the similarity between each subgraph’s
temporal expression and the time course of performance,
and we refer to this quantity as the subgraph’s perfor-
mance loading (Fig. 1). Here, performance is calcu-
lated as the percentage of accurate trials over a run of
32 trials. We hypothesized that the ranked performance
loading would be associated with task learning, as oper-
ationalized by the slope of performance over time. It is
important to note the distinction between performance
and learning: performance is defined as task accuracy
and therefore varies over time, while learning is defined
as the linear rate of change in that performance over
the course of the experiment (384 trials over 4 days).
We tested whether learning was correlated with the per-
formance loading of subgraphs. Because the minimum
number of subgraphs in a given subject was 6, we de-
cided to investigate the top four highest performance
loading subgraphs, and the smallest and second small-
est nonzero loading subgraphs. We found a general
trend that the performance loading from high loading
subgraphs was negatively associated with learning rate,
and the performance loading from low loading subgraphs
was positively associated with learning rate (Fig. 3AB).
We assessed the statistical significance of these trends
and found that only the third highest loading subgraph
displayed a performance loading that was significantly
correlated with learning rate after Bonferroni correction
for multiple comparisons (linear model with permutation
tests slope ∼ loading3 + band : p = 0.005). Performance
loading from uniformly phase randomized surrogate data
for this subgraph was not associated with learning rate
(p = 0.292). The direction of the observed effect in the
empirical data is notable; subjects with lower loading
onto high loading subgraphs learned the task better, sug-
gesting that learning is facilitated by a dynamic interplay
between several subnetworks. It is also notable that the
highest loading subgraphs do not have the strongest as-
sociations with learning, indicating that the subgraphs
that most closely track performance are not the same as
the subgraphs that track changes in performance.

Spatial properties of dynamic patterns of functional
connectivity

Next we sought to better understand why the third
highest loading subgraph was most robustly associated
with learning. We hypothesized that because of this
subgraph’s strong association across subjects, it might
recruit sensors near consistent brain regions and reflect
the involvement of specific cognitive systems across sub-
jects. To evaluate this hypothesis, we began by inves-
tigating the shared spatial properties of this subgraph
in comparison to the others. To identify shared spatial
features we grouped subgraphs together by their ranked
performance loading, and then quantified how consistent
edges were across participants [92] (see Methods). We
found that the average consistency varied by frequency
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FIG. 3. Performance loading is associated with learning.

(A) Here we show the p-values for empirical (green) and
uniformly phase randomized (grey) data for linear models
relating the slope of performance with ranked performance

loading from each frequency band. The black line
corresponds to p = 0.05, while the red dashed line

corresponds to the Bonferroni corrected α = 0.008. Error
bars show the standard error and median of p-values from

500 models with bootstrapped samples. (B) The
standardized regression coefficients for the same models.

Error bars show the standard error and mean of coefficients
from 500 models with bootstrapped samples.

band, and differed between the empirical and surrogate
data, but not across ranked subgraphs (linear model
consistency ∼ band+rank+data : Fband(2, 17) = 90.36,
pband = 9.00× 10−10, Fdata(1, 17) = 41.8, pdata = 5.78×
10−6). The α band had the most consistent edges, fol-
lowed by the γ band, and then the β band (tαβ = −12.68,
pαβ = 4.3× 10−10, tαγ = −10.41, pαγ = 1.2× 10−8). In
the uniformly phase randomized surrogate data, we ob-
served less consistent subgraphs than those observed in
the empirical data (t = −6.47, p = 5.78 × 10−6). These
observations support the conclusion that across the pop-
ulation, despite heterogeneous performance, similar re-
gions interact to support performance and learning to
varying degrees.

In order to approximate system-level activation with
sensor level data, we used lobe montages provided by
Brainstorm (see Methods). Spatially, subgraphs were
dominated by connectivity in the frontal lobe sensors,
with subtle differences in the pattern of connections from
the frontal lobe sensors to sensors located in other ar-
eas of the brain (Fig. 4). To determine which functional
edges were most consistent in each subgraph and fre-
quency band, we calculated the average consistency over
each lobe and motor cortex in both hemispheres (for the

same analysis in surrogate data, see Fig. S6). In the α
band, the most consistent edges on average were located
in the left frontal lobe in the highest performance loading
subgraph, in the left occipital lobe in the second high-
est performance loading subgraph, between right frontal
and right motor in the third highest performance loading
subgraph, and between left frontal lobe and right pari-
etal lobe in the lowest performance loading subgraph. In
the β band, the most consistent edges were located be-
tween right and left frontal lobe for the highest and sec-
ond highest performance loading subgraph, between left
frontal lobe and right motor for the third highest per-
formance loading subgraph, and between left and right
frontal lobe for the lowest performance loading subgraph.
In the γ band, the most consistent edges were located in
the left frontal and right frontal lobes for the highest per-
formance loading subgraph, in the left frontal lobe and
right motor for the second highest performance loading
subgraph, and in left frontal and right frontal lobe for
the third highest and lowest performance loading sub-
graphs. We wished to demonstrate that the consistent
involvement of more frontal sensors across subgraphs was
not due to the presence of electro-oculogram (EOG) arti-
facts that persisted after removal of eye blinks with ICA.
We therefore calculated the weighted phase-locking in-
dex between both vertical and horizontal EOG sensors
and all neural sensors. Qualitatively, we did not observe
any consistently strong connectivity between EOG chan-
nels and more frontal sensors, indicating that the frontal
connectivity identified in our analysis is likely not due
to residual artifacts from eye movements (Fig. S7). We
also note that the most consistent individual edges for
each subgraph are still only present in 10-12 individu-
als, indicating a high amount of individual variability.
Collectively, these observations suggest widespread indi-
vidual variability in the spatial composition of ranked
subgraphs, with the most consistent connectivity being
located in the frontal lobe during BCI learning.

Temporal properties of dynamic patterns of
functional connectivity

Importantly, subgraphs can be characterized not only
by their spatial properties, but also by their temporal
expression. We therefore next examined the temporal
properties of each subgraph to better understand why the
third highest performance loading subgraph was most ro-
bustly associated with learning. As a summary marker of
temporal expression, we calculated the total energy of the
time series operationalized as the sum of squared values,
as well as the time of the peak value of the time series.
Across frequency bands, we found no significant depen-
dence between energy and subgraph ranking. We did find
a significant effect of rank for the peak time of temporal
expression obtained from the empirical data (repeated
measures ANOVA peak ∼ rank+ band : Frank(3, 215) =
6.67, prank = 2.53 × 10−4 but not from the uniformly
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FIG. 4. Spatial distribution of subgraph edges that are consistent across participants. Consistent edges for each
frequency band and for each ranked subgraph. Left images show individual edges plotted on a topographical map of the brain.
Right images show the mean edge weight over sensors for a given region. We studied 10 regions, including the frontal lobe,
temporal lobe, parietal lobe, occipital lobe, and motor cortex in both hemispheres. The weight of the edge corresponds to the
number of individual participants for whom the edge was among the 25% strongest for that subgraph.

phase randomized surrogate data (Frank(3, 215) = 1.28,
p = 0.282). Overall, peak times are widely distributed
across individuals. However we find that across bands,
the highest performance loading subgraph has a later
peak, which is intuitive since performance is generally
increasing over time and these subgraphs most strongly
track performance.

We then performed post-hoc paired t-tests corrected for
multiple comparisons (Bonferroni correction α = 0.006)
between the highest performance loading subgraph and
all other ranked subgraphs in each band. In the α band,
the highest performance loading subgraph only peaked
significantly later than the lowest (paired t-test N =

20, tlow = 8.06, plow = 1.49 × 10−7) after Bonfer-
roni correction (α = 0.006). In the β band, the high-
est performance loading subgraph peaked significantly
later than all others (paired t-test N = 20, t2H = 10.9,
p2H = 1.39 × 10−9; t3H = 7.56, p3H = 3.57 × 10−7;
tlow = 8.07, plow = 1.49−7). In the γ band, the highest
performance loading subgraph peaked significantly later
than the second highest, and lowest loading subgraphs
(paired t-test N = 20, t2H = 4.50, p2H = 2.46 × 10−4;
tlow = 8.06, plow = 1.49 × 10−7). (Fig. 5). Finally, we
asked whether the time of the peak in the third highest
performance loading subgraph was associated with learn-
ing. We did not find a relationship between peak time
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FIG. 5. Temporal expression of ranked subgraphs. The
peak temporal expression for every subject (black data point),
for each frequency band (indicated by color) and for each
subgraph (ordered vertically). Violin plots show the density
distribution of all subjects’ peaks. The median is marked with
a solid line through the violin plot.

and learning in any frequency band (Pearson’s correla-
tion: α : r = 0.005, p = 0.98, β : r = 0.047, p = 0.84,
γ : r = −0.21, p = 0.037). To summarize these findings,
we note that across participants and especially in the β
band, subgraphs that support performance are highly ex-
pressed late in learning, when performance tends to be
highest. However, subgraphs that support learning do
not have consistent peaks across subjects, and each indi-
vidual’s peak does not relate to their learning rate, indi-
cating that some other feature of these subgraphs must
explain their role in learning.

Explaining dynamic patterns of functional
connectivity supporting BCI learning via network

control theory

Lastly we asked how the third highest loading sub-
graph could facilitate successful BCI performance, as
shown in Fig. 3. Here, we considered an edge – extracted
under penalties of spatial and temporal sparsity – as a
potential path for a brain region to affect a change in the
activity of another brain region [35, 109]. Assuming the
true connectivity structure is sparse, the regularization

applied in the NMF algorithm can remove large statis-
tical relationships between regions that are not directly
connected, but might receive common input from a third
region [28] (see Methods for addition discussion, and see
Fig. S1A-B for the effect of regularization on the preva-
lence of triangles). We hypothesized that the pattern of
edges in this subgraph would facilitate brain states, or
patterns of activity, that were predictive of BCI liter-
acy. Specifically, we expected that when the brain mir-
rored the connectivity of the third subgraph, the brain
could more easily reach states of sustained motor im-
agery or sustained attention than when the brain mir-
rored the connectivity of the lowest performance loading
subgraph. To operationalize these hypotheses from sen-
sor level data, we identified sensors near motor and atten-
tion areas with montages from Brainstorm and set those
as targets (see Methods). We also hypothesized that the
magnitude of this difference would be associated with
each subject’s learning rate. To test these hypotheses, we
used mathematical models from network control theory
to quantitatively estimate the ease with which the brain
can reach a desired pattern of activity given a pattern of
connectivity (see Methods and Fig. S1C-D for analyses
demonstrating the efficacy of the regularized subgraphs
in linearly predicting changes in activity). Specifically we
calculated the optimal control energy required to reach a
target state (either sustained motor imagery or sustained
attention) from an initial state when input is applied pri-
marily to the left motor cortex, which was the site of BCI
control (Fig. 6A-B).

We tested whether the third highest performance load-
ing subgraph supported the transition to states of sus-
tained motor imagery or sustained attention with smaller
energy requirements than other subgraphs that did not
support learning in the same way. We chose the lowest
performance loading subgraph for comparison because it
was the only subgraph with a large positive standard-
ized regression coefficient for fitting learning, which con-
trasts sharply with the large negative coefficient for the
third subgraph. For both states (motor imagery and at-
tention), we found no population level differences in en-
ergy requirements by the two subgraphs (paired t-test
N = 20, motor imagery: tα = −0.005, pα = 0.565,
tβ = 1.38, pβ = 0.184, tγ = −1.00, pγ = 0.329. atten-
tion: tα = −1.35, pα = 0.193, tβ = −0.344, pβ = 0.735,
tγ = −0.937, pγ = 0.360). We next tested whether the
magnitude of the difference in energy required by the
two subgraphs to reach a given state tracked with learn-
ing rate. In the β band, we observed a significant cor-
relation between the magnitude of the energy difference
to reach attentional states and learning rate over sub-
jects (Pearson’s correlation coefficient r = 0.560, p =
0.0103, Bonferroni corrected for multiple comparisons
across frequency bands; Fig. 6). Notably, the relation-
ship remained significant when controlling for subgraph
density (linear model slope ∼ energy difference +
density difference: tenergy = 2.68, penergy = 0.0158,
tdensity = −0.266, pdensity = 0.794). When using sub-
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graphs derived from the uniformly phase randomized sur-
rogate data, the relationship was not observed (Pearson’s
correlation r = −0.0568, p = 0.819). We next asked
which subgraph contributed most to this effect. We
found no significant relationship between learning rate
and the energy required to reach the attentional state by
the third highest performance loading subgraph (Pear-
son’s correlation r = −0.389, p = 0.702) or by the low-
est performance loading subgraph (Pearson’s correlation
r = 0.227, p = 0.335). This finding suggests that learn-
ing rate depends on the relative differences between sub-
graphs, rather than the energy conserving architecture
of one alone. As a final test of specificity, we assessed
whether this difference was selective to the third highest
and lowest performance loading subgraph. We found no
significant relationship when testing the difference of the
highest with the third highest performance loading sub-
graph (Pearson’s correlation r = −0.554, p = 0.586), the
highest with the lowest performance loading subgraph
(Pearson’s correlation r = 0.40, p = 0.077), the second
highest with the third highest performance loading sub-
graph (Pearson’s correlation r = 0.266, p = 0.257), or
the second highest with the lowest performance loading
subgraph (Pearson’s correlation r = −0.072, p = 0.764).
This pattern of null results underscores the specificity of
our finding.

Reliability and specificity of inferences from network
control theory

Collectively, our findings are consistent with the hy-
pothesis that during BCI learning, one subnetwork of
neural activity arises, separates from other ongoing pro-
cesses, and facilitates sustained attention. An alternative
hypothesis is that our results are due to trivial factors re-
lated to the magnitude of the attentional state, or could
have just as easily been found if we had placed input to
a randomly chosen region of the brain, rather than to
the left motor cortex which was the actual site of the
BCI control. To determine whether these less interest-
ing factors could explain our results, we performed the
same network control calculation but with a spatially
non-overlapping target state, and then – in a separate
simulation – with a mirrored input region (right motor
cortex rather than left motor cortex). We performed the
spatial shifting by ordering the nodes anatomically (to
preserve spatial contiguity), and then circular shifting
the attention target state by a random number between
1 and N − 1. For 500 circularly shifted states, only 3
(0.6%) had a correlation value equal to or stronger than
the one observed (Fig. S8). Furthermore, we found no
significant relationship between learning rate and the dif-
ference in energy required by the two subgraphs to reach
the true attention state when input was applied to the
right motor cortex instead of the left motor cortex (Pear-
son’s correlation t = 0.711, p = 0.313). Together, these
two findings suggest that the relationship identified is

specific to BCI control.
Finally, we assessed the robustness of our results to

choices in modeling parameters. First we performed the
computational modeling with two different sets of control
parameter values (see Supplement). In both cases, the
significant relationship remained between learning rate
and the difference in energy required by the two sub-
graphs to reach the attentional state (set one Pearson’s
correlation coefficient r = 0.476, p = 0.0338; set two
Pearson’s correlation coefficient r = 0.514, p = 0.0204).
Second, since our target states were defined from prior
literature, there was some flexibility in stipulating fea-
tures of those states. To ensure that our results were not
unduly influenced by these choices, we tested whether
ideologically similar states would provide similar results.
Namely, we assessed (i) the impact of varying the mag-
nitude of (de)activation by changing (-)1 to (-)2, (ii) the
impact of the neutral state by changing 0 to 1, and (iii)
the impact of negative states by changing -1, 0 and 1 to
1, 2, and 3. We found a consistent relationship between
learning rate and the difference in energy required by the
two subgraphs to reach the attentional state when we
changed the magnitude of activation/deactivation (Pear-
son’s correlation coefficient r = 0.560, p = 0.0103), as
well as when we changed the neutral state (Pearson’s
correlation coefficient r = 0.520, p = 0.0188). However,
we found no significant relationship when removing neg-
ative states (Pearson’s correlation coefficient r = 0.350,
p = 0.130), indicating that this result is dependent on our
choice to operationalize deactivation as a negative state
value. After performing these robustness checks, we con-
clude that a selective separation of the third highest and
lowest performance loading subgraphs impacts their abil-
ity to drive the brain to patterns of sustained attention
in the β band in the context of BCI control. This result
is robust to most of our parameter choices, is selective
for biologically observed states, and is not observed in
surrogate data.

DISCUSSION

In this work, we use a minimally constrained decom-
position of dynamic functional connectivity during BCI
learning to investigate which groups of phase locked
brain regions (subgraphs) support BCI control. The per-
formance loading onto these subgraphs favors the the-
ory that dynamic involvement of several subgraphs dur-
ing learning supports successful control, rather than ex-
tremely strong expression of a single subgraph. Addi-
tionally, we find a unique association for the third highest
loading subgraph with learning at the population level.
This result shows that learning is not simply explained
by the subset of edges that has the most similar tem-
poral expression to behavior, but rather that a subnet-
work with a middling range of similarity has the strongest
relationship with performance improvement. While the
spatiotemporal distribution of this subgraph was vari-
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FIG. 6. Separation of the ability to modulate attention is associated with learning. Different patterns of connections
will facilitate transitions to different patterns of brain activity. We hypothesize that the ease with which connections in certain
regularized subgraphs facilitate transitions to patterns of activity that support either motor imagery (A) or attention (B) will
be associated with learning rate. We use network control theory to test this hypothesis. We model how much energy (u(t))
is required to navigate through state space from some initial pattern of activity x(0) to a final pattern of activity x(T ). Some
networks (e.g., the brown network in panel A) will require very little energy (schematized here with a smaller, solid colored
arrow) to reach patterns that support motor imagery, while other networks (e.g., the pink network in panel B) will have small
energy requirement to reach patterns of activity that support attention. (C) The relationship between learning rate and the
difference in energy required to reach the attention state when the underlying network takes the form of the lowest versus third
highest performance loading subgraphs for empirical data (green) and uniformly phase randomized surrogate data (grey). (D)
The relationship between the learning rate and the energy required to reach the attention state when the underlying network
takes the form of the lowest performance loading subgraph, or when the underlying network takes the form of the third highest
performance loading subgraph.

able across individuals, we did observe some consistencies
at the group level. Spatially, the third highest loading
subgraph showed strong edges between left frontal and
right motor cortices for low frequencies, and left frontal
and left motor cortices for the γ band. Lower frequen-
cies showed stronger connectivity to the ipsilateral (to
imagined movement) motor cortex, suggesting a possible
role in suppression for selective control. This subgraph
also showed the highest expression earlier than the other
ranked subgraphs we investigated, perhaps linking it to
the transition from volitional to automatic control.

We next wished to posit a theory of how these sub-
graphs fit with previously identified neural processes im-
portant for learning, despite their heterogeneity across
subjects. After quantifying the extent to which NMF reg-
ularization removed potentially redundant relationships
between regions (Fig. S1A-B), we suggested that the
regularized pattern of statistical relationships identified
in this subgraph could comprise an avenue through which

brain activity could be modulated via cognitive control
or external input. We then hypothesized that these net-
works would be better suited to modulate activity in
either regions implicated in attention or in motor im-
agery than other subgraphs, and further that individuals
whose networks better modulated activity in these re-
gions would display greater task learning [56]. We chose
to operationalize the “ease of modulation” with a met-
ric from network control theory called optimal control
energy. Optimal control energy quantifies the minimum
input needed to drive the brain from an initial pattern of
activity to a final pattern of activity, while also assuring
that the pattern of activity stays close to the target state
at every point in time. This last constraint ensures that
we are unlikely to pass through biologically unfeasible
patterns of activity. The notion of optimal control en-
ergy that we use here assumes a particular linear model
of how neural dynamics change given potential avenues
of communication between regions. Importantly, in the
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supplement (Fig. S1C-D) we show that our subgraphs
predict empirical brain state changes according to this
model, and that the contribution of each subgraph to
empirical changes in brain state is related to its tem-
poral expression. Using this model, we did not find any
population differences in optimal control energy when the
simulation was enacted on the third highest performance
loading subgraph compared to the lowest performance
loading subgraph. However, we did find that the mag-
nitude of this difference was associated with learning in
individual subjects. This result was specific to the β band
and to brain regions implicated in attention. Critically,
the relation to learning could not be explained by the
energy of either subgraph alone, was not present in sur-
rogate data derived from a uniformly phase randomize
null model, and was robust to parameter choices. Over-
all, the observations support our hypothesis that in the
β band the subgraphs we identified that support learn-
ing are well suited to modulate activity in brain regions
associated with attention.

A delicate balance of interactions is required for BCI learning

Our initial analysis explored the relationship between
performance loading and learning. It is important to
note the behavioral difference between performance and
learning: we use the term performance to refer to task
accuracy over time, whereas we use the term learning
to refer to how well a subject is able to increase that
accuracy. With that distinction in mind, we aimed to
better understand how subgraphs that vary similarly to
performance (those with high performance loading) re-
late to learning. We found that the subgraph with the
third highest performance loading was most strongly as-
sociated with learning and that a narrow distribution of
performance loading across all subgraphs was associated
with better learning. Together, these two observations
are in line with previous research in motor and spatial
learning, which shows that some brain structures display
differential activity during learning that is independent
of performance [86, 95]. Our work adds to this literature
by demonstrating that in addition to targeted differences
in individual brain regions or networks, a minimally con-
strained decomposition of dynamic functional connectiv-
ity across the whole brain reveals that separable processes
are most associated with performance and with learning.

Additionally, we find that BCI learning is not ex-
plained simply by the processes most strongly associated
with performance and learning individually, but by a dis-
tributed loading across many different subgraphs. This
notion is supported by the sign of beta value for ranked
subgraphs. Generally, subgraphs with higher ranked
loading were negative betas, while subgraphs with lower
ranked loading were positive betas. A wealth of whole
brain connectivity analyses have similarly shown that
the interaction between systems is an important com-
ponent of skill learning specifically, and other domains

of learning more generally [2, 8]. While we observed
marked interactions between many regions, the majority
were located in the frontal lobe for all frequency bands.
Even for α and β frequencies in the highest loading sub-
graph, we see involvment of frontal regions and hetero-
geneity across individuals. This suggests that the NMF
method did not extract a network that was trivially re-
lated to the deterministic mapping between brain activ-
ity and cursor location determined by the BCI2000 soft-
ware. Previous work has also demonstrated changes in
frontal-motor [59] and fronto-parietal [69] connectivity
during motor skill learning. In BCI learning specifically,
the strength of white matter connectivity between frontal
and occipital regions predicts control of motor imagery
based BCIs [97]. Additionally, analyses of this same ex-
periment have shown task related changes in functional
connectivity were spatially diffuse, and found in frontal,
temporal, and occipital regions in the α band [24], and
were strongest in frontal, motor, central, and parietal re-
gions in the β band. Our results add to these findings
by demonstrating that the most consistent regions that
covary in their functional connectivity are interactions
between the frontal lobe and other regions. Our work
shows that broad motifs like the dynamic integration of
multiple systems (including cognitive systems involving
the frontal lobe) found in other types of learning are also
important for BCI learning. Additionally, we add to pre-
vious work on BCI learning specifically by quantifying
the structure of covarying subgraphs of connectivity.

BCI learning is heterogenous across individuals

We find population level consistencies in spatial and
temporal properties of ranked subgraphs despite hav-
ing no constraint to assure consistency across individ-
uals. However, we also note that there is a high degree
of variability in both of these measures. The variabil-
ity is mirrored in the subjects’ performance, with final
performances varying from 38.1 % to 89.3 %. Our obser-
vations are in line with previous literature demonstrating
variability in subjects’ performance and learning for psy-
chological, cognitive, and neurological predictors [49, 56].
Such pervasive and marked individual differences present
a challenge for the use of BCIs clinically [14]. To ad-
dress this challenge, researchers have explored ways to
optimize BCI features and algorithms for neurofeedback
itself [64, 106] and to identify selection criteria for BCI
based therapies [49, 57]. The results of our study support
the idea that different individuals will have slightly dif-
ferent neural correlates of both performance and learning
based on a variety of features such as demographics [94],
spatial manipulation skills [108], relationship with the
technology [13], and attention span [42, 43]. Our find-
ings also highlight the importance of studying models
fit to each individual when searching for selection crite-
ria for BCI therapies. Here, despite temporal and edge
level heterogeneity, our minimally constrained, individual
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specific method of brain connectivity decomposition re-
vealed a robust association with learning with a theoreti-
cal role that aligns well with previous literature. Further
development and expansion of this model to incorporate
resting state neuroimaging data and other physiological
predictors could be a promising direction for selection of
candidates for BCI therapies before training.

Role of beta oscillations in BCI learning

Prominent theories describing the neural processes
that give rise to cognition and shape our behavior often
involve integration of complex multimodal information
using a combination of top-down predictions (built from
prior experience) and bottom-up, sensory-driven repre-
sentations of the dynamic world around us [63, 100?
]. These generalized frameworks, in turn, require the
precise coordination of ensemble neural activity both
within and between brain regions. Several theoretical
approaches have examined how these two scales of func-
tional activity may harmonize to produce the desired be-
havior [91], and empirical research has shown that there
is consistent cross-talk between these scales [90]. Within
human neuroimaging work, synchronous oscillations have
been critical to understanding this complex coordination,
where cortico-cortical propagation delays and membrane
potentials give rise to observed oscillatory activity in the
brain [10, 96]. Here, we study the time varying connectiv-
ity within α, β, and γ bands. Much like how specialized
functions arise from different brain regions, different nar-
rowband oscillations have been implicated in diverse but
specialized processes, where some generalizable theories
suggest a role for α in disengagement of task irrelevant
areas or a lack of sensory processing [83], β in sustain-
ing the current cognitive state [34] and γ in task active
local cortical computation [38]. Specifically in the con-
text of motor imagery based BCIs, α and β bands have
prominent signatures in motor imagery [74]. Our results
show that only the β band’s functional connectivity is
well suited to modulate patterns of activity that support
sustained attention (not motor imagery), which is a crit-
ical process for BCI control. While our results are in line
with generalized theories on the role of oscillations in cog-
nition, the specificity of the β band in our results extends
classic studies that discuss the role of this oscillation in
attention [85] and in maintaining the current cognitive
state [34]. Our results suggest that this maintenance, a
consistent control (or attention to) internally generated
activity, may play a crucial role in longterm BCI use.

Methodological Considerations

NMF Non-negative matrix factorization is a machine
learning technique for separating, in our case, a multi-
modal configuration matrix into a soft-partition of sub-
graphs with time-varying expression. This process has

several advantages, such as being able to link behav-
ioral and neural data, and creating a quantification of
mesoscale structure where brain regions can participate
in multiple functional groups. Nevertheless, the method
also faces several limitations that are common to other
large-scale machine learning techniques. NMF yields a
low rank approximation of a large configuration matrix,
and can sometimes be rank deficient for large number of
subgraphs, for very large datasets, or for datasets with
high covariance. Because of this sensitivity, we were not
able to test our data against independently phase ran-
domized null models.

MEG Functional Connectivity We chose to complete
our analyses in sensor, rather than source space. Ulti-
mately, this choice was motivated by the fact that if any
of our findings could be applicable to clinicians monitor-
ing learning during real-time BCI learning they would
need to be obtained in the sensor space. However, this
choice has two major methodological consequences: (1)
it limits the anatomical resolution of our data, and there-
fore the specificity of the claims that we can make about
the spatial distribution of the regions involved and (2)
it does not protect as well against false positive connec-
tivity estimates[82, 114]. We were not interested in the
finer anatomical resolution of the identified subgraphs,
but more in the process of identifying them, in validating
the hypothesis that features of these subgraphs are asso-
ciated with learning, and in their theoretical functions.
We used montages provided by Brainstorm to approxi-
mate lobes and systems at the sensor level; however, we
acknowledge that even claims made about specific sys-
tems (motor, and attention) at the source level are best
interpreted in light of controls. Our use of spatial permu-
tation tests is thus particularly important, because they
demonstrate that similar contiguous states do not show
the same relationship between energy and learning. Ad-
ditionally, we cannot fully eliminate the possibility that
parts of our data are due to false positive interaction from
signal spread, and our conclusions should be interpreted
in light of this fact. That being said, we have taken sev-
eral steps to reduce the influence of false positives in our
connectivity estimates. First, we use a connectivity esti-
mate that does not include zero-phase lag contributions
that could arise from signal spread [107]. However remov-
ing zero-phase lag contributions on its own is not enough
to prevent against false positive from source spread from
true connections[82]. While source reconstruction par-
tially addresses this problem, it does not eliminate it
entirely[82], and it additionally requires many parameter
choices and has potentially confounding effects on esti-
mates of functional connectivity [12, 22, 54]. Secondly, all
results of interest are compared to a phase-randomized
null model with the same static covariance structure as
the original data, which should lessen the effect of spuri-
ous connectivity estimates.

Optimal Control We chose to use tools from network
control theory to quantify the ease with which each net-
work can modulate brain activity. Network control the-
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ory relies on several assumptions that should be consid-
ered when interpreting these results [105]. First, the
model of dynamics that we employ is linear and noise
free, unlike the brain [46], but has proven useful in gain-
ing intuitions about the behavior of nonlinear systems
[55, 76]. However, we still sought to quantify the abil-
ity of this linear model to explain empirical changes in
brain state. Specifically, we asked two questions: (1) do
the regularized subgraphs used in our analyses have the
ability to predict state transitions, and do they do so
better than randomly rewired networks, and (2) is the
contribution of each subgraph to explaining a given state
transition proportional to its temporal expression, and is
it more proportional than a different subgraph’s tempo-
ral expression? To evaluate these questions, we generated
brain states for every trial (band specific power at each
channel) and simulated Eq. 5 (see Supplement). Regard-
ing the similarity of predicted and empirical state tran-
sitions, we find modest correlation values (mean Pear-
son’s r = 0.25) that are significantly greater than the
correlations observed from randomized networks. Simi-
larly for our second question, we found small but pos-
itive correlations between the contribution of each sub-
graph to a given transition and its temporal expression
(mean Pearson’s r = 0.03), which was also significantly
greater than correlations to temporal expression from
mismatched subgraphs. While it is unsurprising that
our linear model did not fully capture neural dynamics
across a three second trial, it is worth considering exten-
sions that can maximize this similarity for future analyses
investigating how connections between regions facilitate
changes to activity. One option is to use effective con-
nectivity [70, 78] – that solve for a network of connec-
tions that best predicts the evolution of brain states in
time. However, effective connectivity matrices are often
sparse, and therefore not well suited to the NMF matrix
decomposition used in the present work. Alternatively,
one could use non-linear models of dynamics [58] and
non-linear control theory [112] to capture a wider range
of dynamic behaviors, although non-linear control does
not currently support the same scope of tools available
for linear control theory. Lastly, future work could use
functional approximation [15] in order to identify a set
of simple basis functions that well approximate the data.
If a sparse approximation can be found, it supports the
idea that the underlying non-linear dynamics can be cap-
tured with linear combinations of these basis functions,
and therefore are suitable to be modeled with simplified
linear models.

Additionally, network control is typically applied to
time invariant, structural connections that have a clear
role as an avenue along which brain activity can prop-
agate. Here we used functional connectivity (weighted
phase locking) which is a statistical relationship that (1)
does not imply the presence of a physical connection and
(2) is not time invariant. Due to (1), our original func-
tional connectivity matrix can have large values between
two regions that are not directly connected, but might

both connect to the same region. This situation would
lead to a triangle composed of three connections in a
functional connectivity matrix where in reality there are
only two connections. However, the regularization ap-
plied by the NMF algorithm mitigates this concern in a
manner that is similar to the regularization applied in
effective connectivity metrics [28, 70]. We also explicitly
quantify the effect of regularization on triangles in our
subgraphs and find a dramatic reduction from the origi-
nal functional connectivity (Fig. S1A-B). This quantifi-
cation, along with the two validations discussed above,
show that our model is a suitable way to evaluate the role
of regularized subgraphs in modulating different patterns
of activity. In relation to (2), we note that functional
connectivity in not time-invariant, unlike the state ma-
trix more commonly employed in linear control models.
However, it is important to note that NMF identifies sub-
graphs that are separable from their temporal expression,
and that we expect that the hypothesized role in control
would only be prominent when the subgraph was highly
expressed.

Conclusion and Future Directions

Future research that builds on this work could explore
ways to increase sensitivity to an individual’s learning
rate. Given that EEG and MEG sensors capture some
unique information [72] and provide increased discrim-
inability in clinical applications including BCIs [21, 25],
it would be interesting to investigate whether the concur-
rently collected EEG data in this study better captures
relevant neural dynamics for performance and learning,
respectively. Such an effort, combined with source recon-
struction, would be a useful next step in basic scientific
inquiries directed towards characterizing these separable
networks involved in learning. However, combining EEG
and MEG sources would greatly increase the number of
variables relative to the number of observations in the
connection matrix to be decomposed, and would make
the NMF algorithm less likely to converge. It may thus be
necessary to use connectivity estimates from smaller time
windows. Clinical utility could potentially be achieved if
similar methods could be applied to resting state data
to identify network properties that separate individuals
by their learning rate, thereby eliminating the need for
any BCI training. Finally, confirmatory studies with a
larger sample of individuals would both validate the cur-
rent results, and provide a better assessment of potential
clinical utility.

In conclusion, we use a minimally constrained method
of matrix decomposition that is specific to each human
participant to investigate the dynamic neural networks
that support BCI learning. We find that the subgraphs
that most tightly mirror performance are not the same
subgraphs that most strongly support learning. Addi-
tionally, we find that the interaction between many differ-
ent neural processes is important for BCI learning. While
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the subgraphs identified are heterogeneous (as is subject
performance), we find consistent involvement of frontal
and motor cortices in subgraphs that support learning.
We also observe differential temporal expression amongst
subgraphs, and perhaps most notably that the subgraphs
that vary more similarly with performance reach their
highest expression later in learning. Lastly, we test the
hypothesis that subgraphs that support learning are bet-
ter suited to modulate activity in brain regions important
for attention than other subgraphs. We find evidence to
support this hypothesis in the β band specifically, ulti-
mately suggesting that the separation of processes for
maintaining attention is important for successful BCI
learning. Our results align with prior work from dynamic
functional connectivity in other types of skill learning,
and also highlight a method for identifying individual
predictors of successful BCI control with theoretical sup-
port.

Citation Diversity Statement

Recent work in neuroscience and other fields has iden-
tified a bias in citation practices such that papers from
women and other minorities are under-cited relative to
the number of such papers in the field [18, 20, 31, 33, 73,
104]. Here we sought to proactively consider choosing ref-
erences that reflect the diversity of the field in thought,
form of contribution, gender, and other factors. We
used automatic classification of gender based on the first
names of the first and last authors [33, 113], with possi-
ble combinations including male/male, male/female, fe-
male/male, and female/female. Excluding self-citations
to the senior authors of our current paper, the references

contain 55.2% male/male, 11.5% male/female, 21.9%
female/male, 11.5% female/female, and 1.0% unknown
categorization. We look forward to future work that
could help us to better understand how to support equi-
table practices in science.
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