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Abstract

Humans deftly parse statistics from sequences. Some theories posit that humans learn these statistics by
forming cognitive maps, or underlying representations of the latent space which links items in the sequence.
Here, an item in the sequence is a node, and the probability of transitioning between two items is an edge.
Sequences can then be generated from walks through the latent space, with different spaces giving rise to dif-
ferent sequence statistics. Individual or group differences in sequence learning can be modeled by changing
the time scale over which estimates of transition probabilities are built, or in other words, by changing the
amount of temporal discounting. Latent space models with temporal discounting bear a resemblance to mod-
els of navigation through Euclidean spaces. However, few explicit links have been made between predictions
from Euclidean spatial navigation and neural activity during human sequence learning. Here, we use a combi-
nation of behavioral modeling and intracranial encephalography (iEEG) recordings to investigate how neural
activity might support the formation of space-like cognitive maps through temporal discounting during se-
quence learning. Specifically, we acquire human reaction times from a sequential reaction time task, to which
we fit a model that formulates the amount of temporal discounting as a single free parameter. From the pa-
rameter, we calculate each individual’s estimate of the latent space. We find that neural activity reflects these
estimates mostly in the temporal lobe, including areas involved in spatial navigation. Similar to spatial naviga-
tion, we find that low-dimensional representations of neural activity allow for easy separation of important

Significance Statement

Humans are adept at learning the statistics of sequences. This ability is facilitated by learning a latent space
of transition probabilities between items, or a cognitive map. However, work testing explicit theories of how
these maps are built, vary across individuals, and are reflected in neural activity is sparse. We use a model
that infers an individual’s cognitive map from sequential reaction times and intracranial encephalography
(iEEG) recordings to address these gaps. We find that neural activity in the temporal lobe most often reflects
the structure of maps and easily identifies task-relevant features of the latent space. We also identify fea-
tures of individual learning strategies and latent spaces that influence how quickly maps are learned. These
discoveries advance our understanding of humans’ highly generalizable ability to learn spaces.
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features, such as modules, in the latent space. Lastly, we take advantage of the high temporal resolution of
iEEG data to determine the time scale on which latent spaces are learned. We find that learning typically hap-
pens within the first 500 trials, and is modulated by the underlying latent space and the amount of temporal
discounting characteristic of each participant. Ultimately, this work provides important links between behav-
ioral models of sequence learning and neural activity during the same behavior, and contextualizes these re-
sults within a broader framework of domain general cognitive maps.

Key words: cognitive maps; intracranial electroencephalography; sequence learning

Introduction
A diverse range of behaviors requires humans to parse

complex temporal sequences of stimuli. One can study
this ability by exposing individuals to sequences evincing
precise statistics, and by measuring how individuals react
to or remember the stimuli. Sequence statistics can be
fixed by (1) an underlying graph, or latent space, defining
allowable transitions between stimuli; and by (2) a walk
through the graph that determines which of the allowable
transitions are taken and with what frequency (Fig. 1A).
The graph representation of the latent space brings with it
a rich toolbox of methods to quantify latent space topolo-
gies that are especially well-suited for abstract relational
spaces connecting discrete objects (Butts, 2009). Recent
studies have revealed that humans are sensitive to transi-
tion probabilities between neighboring elements (Saffran
et al., 1996; Fogarty et al., 2019), higher-order statistical
dependencies between non-neighboring elements like
triplets or quadruplets (Newport and Aslin, 2004), and
the global structure of the graph (Schapiro et al., 2013;
Kahn et al., 2018). All of these relationships are important
for naturalistic learning. For example, when learning a
language, both human and artificial language processing
algorithms require knowledge of which words tend to
follow which others (transition probabilities), as well as

of the grammar of sentences, structures of thought,
and designs of paragraphs (higher-order structure;
Bowerman, 1980; Pennington et al., 2014). Sensitivity to
these relationships predicts language ability and prob-
lem solving skills (Kidd, 2012; Solway et al., 2014;
Pudhiyidath et al., 2020).
Computational models of behavior that require learning

an underlying latent space bear a striking resemblance to
those used for learning and navigating Euclidean or ab-
stract relational spaces (Gershman et al., 2012; Lynn et
al., 2020a). Moreover, similar brain regions have been im-
plicated in all three kinds of cognitive tasks (Buzsáki and
Moser, 2013; Schapiro et al., 2016, 2017). However, this
level of generalization across task domains has been diffi-
cult to replicate in artificial intelligent systems and remains
an active area of research (Whittington et al., 2020; Wang,
2021). Work in sequence, relational, and spatial learn-
ing suggests that individuals may represent internal
estimations of the latent spaces as cognitive maps
that can be referenced during navigation and problem
solving (Stachenfeld et al., 2014; Constantinescu et
al., 2016; Epstein et al., 2017; Behrens et al., 2018).
Recent progress in task generalizability in artificial sys-
tems has used similar techniques (Whittington et al.,
2020; Wang, 2021). Uncovering the processes that
guide latent space estimation, and investigating how
these processes are implemented in the brain, will
deepen our understanding of how humans map the
world around them, and provide suggestions for artifi-
cial intelligence.
Some mathematical models of latent space estimation

rely on individuals building internal estimates of which
stimuli in the space are likely to follow which others
(Dayan, 1993; Momennejad et al., 2017; Russek et al.,
2017). Acquired through exploration, these estimates can
be used to make predictions about which stimuli are likely
to come next, and therefore allow individuals to navigate
the space to reach desired goals (Momennejad et al.,
2017). If we were designing a system to learn latent
spaces, one strategy for building estimates would be to
perfectly remember and log each observed transition, and
then to make predictions from that stored estimate.
Although such estimates are accurate, they require the
learner to store each observed transition, a requirement
that is not evidenced in or expected from human behavior
(Bornstein et al., 2017; Momennejad et al., 2017; Lynn et
al., 2020a). Instead, if estimates of future stimuli incorpo-
rate a broader, discounted temporal context, then some
of the speed and flexibility of navigation can be restored,
although at a cost to the fidelity of the estimate of the la-
tent space (Lynn et al., 2020a; Fig. 1B).
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Temporally extended models do not recreate the exact
latent space of the true environment, but their modifica-
tions can have important behavioral benefits (Fig. 1C). For
example, artificial intelligent agents using temporal dis-
counting can quickly navigate to rewards in new environ-
ments and flexibly respond to changes in strategies or
goal locations by using paths they have not explicitly trav-
eled before (Dayan, 1993; Momennejad et al., 2017).
Without the modifications from temporal discounting pro-
viding an extended context of future paths in space result-
ing from a given action, agents would only be able to
traverse paths they had already encountered, which
would limit their flexibility. Additionally, when applied to
the free recall of word sequences, these models replicate
the ability of humans to remember words presented in
similar contexts (Howard et al., 2005). In these temporally
extended models, when predicting which state is likely to
follow the current state, the agent down-weights stimuli
likely to occur far into the future relative to those in the
near future; hence the term discounting. These temporally
discounted estimates of the latent space can be con-
structed by applying the same discounting to the history
of the previously visited stimuli (Dayan, 1993; Lynn et al.,
2020a; Fig. 1B). Notably, temporal discounting is a biolog-
ically feasible process and can be implemented in brain
regions thought to be important for building and manipu-
lating cognitive maps: the hippocampus, entorhinal cor-
tex, and prefrontal cortices (Stachenfeld et al., 2014; de
Cothi and Barry, 2019). Activity in the hippocampus and
entorhinal cortex has been shown to be more reflective of
these discounted estimates of the latent space than the
true latent space (Schapiro et al., 2016; Garvert et al.,
2017). While most links to implementing temporal dis-
counting have been uncovered in models of the medial
temporal lobe, recent studies of latent space learning
often find similar activity in diverse areas, suggesting that
these algorithms might be implementable in any area of
cortex (Bao et al., 2019; Viganò and Piazza, 2020). Taken
together, these behavioral and neural insights support the
conclusion that humans use temporally discounted esti-
mates of latent spaces to solve a diverse set of problems.
When constructing representations of latent spaces,

the brain must balance the need to accurately extract im-
portant features from the environment with the pressure
to minimize resource consumption (Schapiro et al., 2017;
Lai and Gershman, 2021). This balance between com-
pressing information and retaining important features is
evidenced behaviorally in the tendency to better remem-
ber events or items that occur within a given temporal
context, rather than spanning multiple contexts (Brunec
et al., 2018). The medial temporal lobe is thought to facili-
tate the separation and generalization of contexts by iden-
tifying key features of estimated latent spaces from low-
dimensional projections (Stachenfeld et al., 2014). These
lower dimensional projections can serve to identify impor-
tant features of the space that might be relevant for deci-
sionmaking, such as modules of similar items in relational
spaces (Nassar et al., 2018) and borders in physical
spaces (Stachenfeld et al., 2014). For cognitive maps spe-
cifically, these processes are thought to occur in the
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Figure 1. Schematic of latent space learning. A, Visualization
of the two graph types used to generate stimulus sequences in
this study: modular (left) and lattice (right). An example se-
quence generated from a random walk on the graph, denoted
by arrows, is shown below each visualization. B, A schematic of
how temporal discounting of previous stimuli leads to different
predictions about which stimulus is likely to appear next in a se-
quence. As someone experiences each stimulus in a sequence,
they will update their estimation of the latent space (shown in
the top graph) with the temporal context preceding the currently
viewed stimulus. The amount that each stimulus contributes to
the temporal context for a given b is given by the height of the
colored line. More yellow colors indicate less temporal dis-
counting and smaller b values. Individuals with smaller b val-
ues will incorporate stimuli that happened further in the past
into their estimate of the latent space. For example, individuals
with high (maroon) b values will only estimate connections be-
tween stimuli seen one time point apart. However, individu-
als with small (yellow) b values will estimate connections
between stimuli seen more than four time points apart, but
with less confidence than connections between stimuli seen
more recently. This confidence is depicted visually by the
thickness of the connections in the estimated latent space.
Individuals can use their estimate of the latent space to pre-
dict an upcoming stimulus, indicated by a “(?).” The size of
each stimulus in the colored box indicates the confidence
that the stimulus is going to be the next node in the se-
quence and is proportional to the weight of the connection
between those stimuli in the estimated latent space. C, A
visualization of how different values of b result in different
latent space estimations. As b approaches 0, all transitions
are estimated to be equally likely. As b approaches 1, esti-
mations converge to the true structure.
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entorhinal cortex, although evidence of similar low-di-
mensional bases in humans have been found in other re-
gions (Stachenfeld et al., 2014; Constantinescu et al.,
2016; Bao et al., 2019). Additionally, other medial tempo-
ral structures including the hippocampus have been
modeled as variational autoencoders, which compress
incoming sensory and structural information to predict
future stimuli across domains (Whittington et al., 2020).
Further verification that important task features can be
identified from a low-dimensional basis of neural activity
outside of Euclidean spatial navigation would help sup-
port the generalizability of these processes. Additionally,
explicit mappings from trade-offs between accuracy and
memory load to trade-offs between compressed and
separable neural activity can help us better understand
dependencies between important behavioral and cellular
needs. Behavioral evidence suggests that all these fea-
tures must be made available after relatively few expo-
sures of different stimuli so that they can be used to
make decisions (Lee et al., 2015). Neural recordings
taken during latent space learning could help clarify the
timescale over which these neural features arise.
Here, we seek to better understand the neurophy-

siological basis of temporally discounted latent space
estimation in humans. Additionally, we wish to test for
similarities and divergences from processes of Euclidean
spatial learning. To accomplish these goals, we will use
an individual specific model of temporal discounting in
patients undergoing intracranial encephalography (iEEG)
monitoring while completing a probabilistic serial reac-
tion time task. In this task, participants see cues gener-
ated from a random walk on either a modular or lattice
graph (Fig. 1A). To each individual’s reaction time data,
we apply a maximum entropy model which determines
the steepness of temporal discounting as parameterized
by a single variable b (Lynn et al., 2020a; Fig. 1B). This
parameter also determines the structure of the corre-
sponding estimates of the latent space for that individual
(Fig. 1C). We then use representational similarity analysis
to identify the electrode contacts whose activity is most
similar to the estimated latent space and identify com-
mon regions involved across participants. This analysis
allows us to determine whether our model’s estimation
of latent spaces is reflected in neural activity, and
also whether the regions involved are consistent across
individuals and previously implicated in Euclidean
space navigation. We find that for activity aligned to the
stimulus (stimulus-locked), structures in the lateral and
medial temporal lobe most often reflect the estimated
latent space. In activity aligned to the response (re-
sponse-locked), this similarity with the latent space
shifts to frontal and premotor areas. We next tested
whether low-dimensional neural activity could easily iden-
tify features of the latent space, as it does in Euclidean
spatial learning. We find robust separability of modules in
neural activity, consistent with the identification of bor-
ders and clusters in Euclidean and relational learning.
Lastly, we wish to extend our understanding of the tem-
poral dynamics of latent space estimation. In our sample
of neural data, we find that neural activity reflects the

latent space within 500 stimulus exposures, and that the
steepness of temporal discounting and the structure of
the underlying graph influence the learning rate.
Ultimately, our study provides a direct comparison

between the distinct processes of latent space learning,
coupled with an evaluation of their neurophysiological
underpinnings. Additionally, it provides preliminary me-
asurements of the timescales on which latent space
estimations are formed, and an accounting of which
factors influence their development. Lastly, we provide
clear future directions for model development, and
point out areas where neural data diverge from theoreti-
cal predictions.

Materials and Methods
Participants
All participants provided informed consent as specified

by the Institutional Review Board of the University of
Pennsylvania, and study methods and experimental pro-
tocols were approved by the Institutional Review Board of
the University of Pennsylvania.

Amazon’s Mechanical Turk (mTurk) cohort
We recruited 50 unique participants to complete our

study on Amazon’s mTurk, an online marketplace for
crowdsourced work. Worker identifications were used to
exclude any duplicate participants. Twenty-five of the
participants completed a task with a sequence generated
from a modular graph, and the other 25 participants per-
formed the same task with a sequence generated from a
ring lattice graph. All participants were paid $10 for their
time (�20min). Three individuals started, but did not com-
plete the task, leaving the sample size at 47 individuals.
Interested candidates were excluded from participating if
they had completed similar tasks for the lab previously
(Kahn et al., 2018; Lynn et al., 2020a).

iEEG cohort
There was a total of 13 participants (10 female, mean

age 33.9 years). See Table 1 for full demographics.
This included three participants who completed a pilot
version of the task that was largely similar. These par-
ticipants were included to increase the number of par-
ticipants when data collection paused during the
COVID-19 pandemic. Two of these 13 participants did
not have electrophysiological recordings that were
synchronized with the task recordings; accordingly,
these two participants were only included in behavioral
analyses.

Behavior
For each participant in the iEEG and mTurk cohorts, we

test their ability to learn the structure underlying a tempo-
ral sequence of stimuli by having them perform a proba-
bilistic motor response task using a keyboard. We will first
outline elements common to both tasks here, and then
highlight differences.
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Common experimental setup and procedure
First, participants were instructed that “In a few mi-

nutes, you will see 10 squares shown on the screen.
Squares will light up in red as the experiment progresses.
These squares correspond with keys on your keyboard,
and your job is to watch the squares and press the corre-
sponding key when the square lights up as quickly as
possible to increase your score. The experiment will take
around 20min.” For some participants, the sequence of
stimuli was drawn from a random traversal through a
modular graph (Fig. 1A, left); for other participants, the se-
quence of stimuli was drawn from a random traversal
through a ring lattice graph (Fig. 1A, right). Both graphs
have 10 distinct nodes, each of which is connected to
four other nodes. Thus, the only difference between the
two graphs lies in their higher-order structure. In the mod-
ular graph, the nodes are split into two modules of five
nodes each, whereas in the lattice graph, the nodes are
connected to their nearest and next-nearest neighbors
around a ring. For each participant, the 10 stimuli are ran-
domly assigned to the 10 different nodes in either the
modular or lattice graph. The random assignment of stim-
uli to nodes ensures that modules are not distinguished
by any stimulus features. Stimuli were each represented
as a row of ten gray squares. Each square corresponds
to and mimics the spatial arrangement of a key on the
keyboard (Fig. 2A). To indicate a target key that the

participant is meant to press, the corresponding square is
outlined in red (Fig. 2B). If an incorrect key was pressed
the message “Error!” displayed on the screen until the
correct key was pressed. Participants had a brief training
period (10 trials) to familiarize themselves with the key
presses before engaging in the task for 1000 trials, which
is a sufficient number of trials for participants to learn the
structure of a similarly sized modular network (Kahn et al.,
2018). To ensure that participants remain motivated and
engaged for the full 1000 trials, participants receive points
based on their average reaction time at the end of each of
four stages (every 250 trials). The duration of the task is
determined by how quickly participants respond, but on
average it takes approximately 20min. On average, par-
ticipants in the mTurk cohort were 94.0 6 3.76% accu-
rate, and participants in the iEEG cohort were 97.7 6
2.50% accurate.

mTurk experiment
Because no experimenter could be present for online

mTurk data collection, a few additional measures were
put in place to ensure that participants understood and
were engaged with the task. First, participants were given
a short quiz to verify that they had read and understood
the instructions before the experiment began. If any ques-
tions were answered incorrectly, participants were shown

Table 1: Participant demographics

Participant Sex
Age
(years) Race Ephys Median RT Graph b Coverage

1 F 36 White Y 0.923 Lattice 0.024 Left: medial, ventral, and lateral temporal; central gyrus/sul-
cus; insula; middle and inferior frontal. Right: medial, ven-
tral, and lateral temporal.

2 M 24 White Y 0.546 Modular 0.17 Right: medial, ventral, and lateral temporal; insula; middle
and inferior frontal.

3 F 25 White Y 1.103 Lattice 1000 Left: medial, ventral, and lateral temporal; inferior parietal;
middle and inferior occipital; insula; cingulate. Right: me-
dial, ventral, and lateral temporal; inferior parietal; central
gyrus/sulcus; insula.

4 F 32 White Y 0.572 Modular 0.43 Left: medial, ventral, and lateral temporal; inferior occipital;
insula; inferior frontal. Right: medial and lateral temporal;
insula.

5 F 47 White Y 0.657 Lattice 1000 Left: medial, ventral, and lateral temporal; inferior parietal;
middle and inferior occipital.

6 F 58 White Y 0.732 Modular 0.12 Right: superior and middle frontal; central gyrus/sulcus;
supplemental motor; cingulate.

7 M 21 White Y 0.724 Lattice 0.33 Left: medial, ventral, and lateral temporal; cingulate; central
and middle occipital; superior parietal; superior, middle,
and inferior frontal.

8 M 22 White Y 0.482 Modular 0.024 Left: medial, ventral, and lateral temporal; insula; middle
and inferior frontal.

9 F 22 White Y 1.075 Modular 0.23 Left: medial and ventral temporal; insula; inferior and middle
frontal; basal ganglia. Right: medial, ventral, and middle
temporal; inferior and superior frontal.

10 F 37 White Y 0.795 Modular 0.044 Left: medial, ventral, and lateral temporal; insula; inferior
frontal; cingulate.

11 F 47 Black Y 0.696 Modular 0 -
12 F 23 White N 1 Modular - -
13 F 39 White N 0.773 Modular - -

Demographic and task relevant information about each participant. The Ephys column indicates whether or not the participant had electrophysiological record-
ings (Y indicates ‘yes’, N indicates ‘no’). The Median RT column provides the median reaction time. A ‘-’ indicates that those data were not available.
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the instructions again and asked to repeat the quiz until
they answered all questions correctly. Additionally, partic-
ipants were instructed that if they took longer than 1min
to respond to any given trial, the experiment would end
and they might not receive payment.

iEEG experiment
A member of the Hospital for the University of

Pennsylvania (HUP) research staff was present during the
experiment to ensure that participants understood the in-
structions. De-identified demographic information was
collected and shared from all participants as part of the
HUP research protocol. This information included age,
race, and sex assigned at birth, as well as an estimate of
how much of their day the participant typically spent typ-
ing at a computer. The iEEG experiment, unlike the mTurk
experiment, also needed to be synchronized to ongoing
neural recordings. To synchronize task events with neural
recordings, the iEEG participants completed the task with
a photodiode attached to the laptop where the test was

being administered. A white square would appear in the
lower corner of the screen when a stimulus appeared on
the screen, which would be replaced by a black back-
ground when the correct response was made. The photo-
diode would record these luminance changes on the
same system that was recording neural data, so that the
two could be synchronized.
Participants in the cohort were also given the option to

complete a second session of the same experiment with
the same graph the following day. This option was taken
by two participants. Because data collection was inter-
rupted by the global pandemic, we also include three pilot
iEEG participants who completed an earlier version of the
task that did not contain breaks or points, but was other-
wise identical.

Linear mixed-effects models
We used linear mixed-effects models to test whether

each participant’s reaction time decreased with increas-
ing trial number. We took this decrease in reaction time as
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evidence that participants were learning the probabilistic
motor response task. Before fitting the mixed-effects
models, we excluded trials that were shorter than 50ms,
or longer than 2 SDs above that participant’s mean reac-
tion time. Short trials were removed because 50ms is not
long enough to see and respond to a stimulus. We also
excluded any incorrect trials. All participants in both co-
horts had accuracy.80%.
Mixed-effects models were fit using the lme4 library in

R (R version 3.5.0; lme4 version 1.1–17), using the lmer()
function for continuous dependent variables and the
glmer() function for categorical dependent variables.
Predictors were centered to reduce multicollinearity.
Some models of accuracy did not converge with the full
set of variables, so variables were removed via backwards
selection with reaction time model p-values until the ac-
curacy model converged. Because of the slight task dif-
ferences between iEEG and mTurk cohorts, different
models were used to test for learning in each cohort.
For the mTurk cohort, the reaction time model was
reaction_time;trial*graph1stage*graph1finger1hand1hand
transition1recency1ð11trial1recencyjparticipantÞ. The ac-
curacy model was correct = trial*graph1stage*graph1finger
1hand_transition1recency1(11trial|participant). Here, hand_
transition indicated whether the current trial used a different
hand than the previous trial, and stage indicated the set of
250 trials, ranging from 1 to 4. For the iEEG cohort, the reac-
tion time model was reaction_time;trial*graph1stage*
graph1finger1hand_transition1session1points1recency1
(11trial1recency|participant). The model for accuracy was
correct;squared_trial*graph1**stage*graph1finger1hand_
transition1session1recency1(11squared_trial|participant).
Here, session indicated whether the data were taken from
the first or second recording session, points indicated
whether these participants were given points according to
their reaction time at breaks, and typing_skill was a self-re-
ported value of how much time participants spent typing on
a computer in a typical day, scaled to range from 1 to 4. The
linear mixed-effects model used to assess cross-module
differences in reaction time was the reaction time model,
but with is_cross_module in place of the graph indicator.
Similarly, the linear mixed-effects model used to assess dif-
ferences in reaction time based on b values was the reac-
tion timemodel, but with b in place of the graph indicator.
The recency term is meant to account for changes to re-

action time based on the local properties of the current
sequence. Participants will tend to react more quickly to
items they have seen more recently (Karuza et al., 2017).
To control for this effect, we included the log transform of
the number of trials since the current stimulus was last
seen, or the recency, as a covariate. The maximum num-
ber of trials was 10. This particular covariate was found to
explain more variance in reaction time than other similar
covariates in this dataset, as well as a similar dataset col-
lected from Kahn et al. (2018; their Fig. S1). The specific
covariates tested were the number of times the current
stimulus was last seen (not log transformed, and not
capped; x2 test x2 = 2448, p, 2.2� 10�16) and the num-
ber of times this stimulus appeared in the last 10 trials (x2

test x2 = 1295.8, p, 2.2� 10�16).

Maximum entropy model: b and Â
To estimate the amount of temporal discounting em-

ployed by each participant, we fit a maximum entropy
model to the residuals of the linear mixed-effects models
specified above. Residuals rather than raw reaction times
are used to better isolate reaction variations because of
the underlying expectations of the graph, rather than bio-
mechanical or motor features like which hand or finger
was used to respond. The model starts with the assump-
tion that the fastest reaction times on this task would arise
from accurate mental representations of the latent space.
This would allow participants to accurately predict which
stimuli could possibly follow any current stimulus, allow-
ing them to react quickly to all transitions. However, these
representations are costly to create and maintain because
they require perfect memory of the sequence of stimuli.
Allowing some inaccuracies in the memory of previous
stimuli simplifies the learning process, but at the cost of
erroneous predictions about future stimuli. In this model,
an exponentially decaying memory distribution deter-
mines the time scale of errors in memory. The exponential
form results in the fact that mistakes in memory will be
temporally discounted, more likely to occur between stim-
uli that are temporally close than those that are temporally
distant. The steepness of this discounting, and therefore
the balance of cost and accuracy, is determined by a sin-
gle parameter b that was fitted to the residuals of each
participant’s reaction times. Larger b values result in
more temporal discounting in the memory distribution, in-
dicating that participants were less likely to make memory
errors, and the errors that were made tended to occur be-
tween stimuli in close temporal proximity. By contrast,
smaller b values would result in less temporal discount-
ing, indicating that participants made longer range errors
in their estimates of the transition graphs. Mathematically,
this is achieved by defining an individual’s estimation of
the latent space as Â ¼ ð1� e�b ÞAðI� e�bAÞ�1, where A
is the true latent space that defines transition probabilities
between stimuli.
To drive more intuition for the model, we will explicitly

walk through an example sequence from a lattice graph
(Fig. 1B). Here, each colored circle represents a stimulus
that is shown at a given time during a sequence. The bot-
tom of the figure panel shows the exponentially decaying
memory function for different values of b in different col-
ors, ranging from maroon (highest b ) to yellow (lowest b ).
The top of the figure shows the estimated latent space for
individuals with different values of b at every time step,
where transitions for different b values are shown in dif-
ferent colors ranging from maroon to yellow. At the first
time point, just after the first stimulus is shown, all individ-
uals (for any value of b ) estimate the latent space to be a
single node with no connections. At the second time step,
all individuals update their latent space to contain one
transition, between the first and second stimuli. At the
third time step, latent spaces start to diverge for individu-
als with different b values. All individuals will once again
update their estimate to reflect a transition between stim-
ulus 2 and stimulus 3. However, individuals with lower b
values (red, orange, and yellow) will additionally estimate
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another weaker and erroneous connection between stim-
ulus 1 and stimulus 3. The strength of the connection
formed between two stimuli that are d t apart in time de-
creases exponentially as e–bd t. Erroneous connections
allow the estimated latent space to reflect the broader
temporal context of stimuli preceding stimulus 3. This pat-
tern continues at time step 4. All individuals add the tran-
sition between stimulus three and stimulus 4. Lower b
values (red, orange, and yellow) add a weaker transition
between stimulus 2 and stimulus 4, and even lower b val-
ues (orange and yellow) estimate an additional, even
weaker connection between stimulus 1 and stimulus 4. At
time point 7, stimulus 1 is repeated, and individuals have
a chance to use their estimated latent spaces to predict
which stimulus will come next in the sequence. The cer-
tainty of that prediction is calculated by summing the out-
going connections from stimulus 1. Individuals with the
highest (maroon) b only have one connection in their la-
tent space, so they will predict that stimulus 2 will come
next. By contrast, individuals with the smallest b (yellow)
think stimulus 2 is most likely to come next, think it slightly
less likely that they will see stimulus 3, slightly less likely
that they will see stimulus 4, and even less likely that they
will see stimulus 5. We expect that individuals will react
more quickly to cues that they more confidently predict;
therefore, we would expect that individuals with different
b values will react differently to the same sequence.
At time point 7, stimulus 1 is repeated, and individuals

have a chance to use their estimated latent spaces to pre-
dict which stimulus will come next in the sequence. The
certainty of that prediction is calculated by summing the
outgoing connections from stimulus 1 in the estimated la-
tent space. Individuals with the highest (maroon) b value
only have one connection in their latent space, so they will
predict that stimulus 2 will come next. By contrast, indi-
viduals with the smallest b value (yellow) think stimulus 2
is most likely to come next, and think it is slightly less
likely that they will see stimulus 3, slightly less likely that
they will see stimulus 4, and even less likely that they will
see stimulus 5. We expect that individuals will react more
quickly to cues that they more confidently predict.
Therefore, we would expect that individuals with different
b values will react differently to the same sequence. We
will next explain how b is calculated from reaction times
below.
Given an observed sequence of nodes x1; :::; xt�1, and

given a parameter b , our model predicts each partici-
pant’s internal estimates of transition probabilities
Âijðt� 1Þ, where i and j are different stimuli. Given a cur-
rent stimulus xt–1, we then model the participant’s an-
ticipation, or expectation, of the subsequent node xt by
aðtÞ ¼ Âxt�1;xtðt� 1Þ. In order to quantitatively describe
the reactions of a participant, we related the expecta-
tions a(t) to predictions about a participant’s reaction
times r̂ðtÞ, and then learned the model parameters that
best fit that participant’s reaction times. The simplest
possible prediction was given by the linear relation
r̂ðtÞ ¼ r01r1aðtÞ, where the intercept r0 represents a
participant’s reaction time with zero anticipation and
where the slope r1 quantifies the strength with which a

participant’s reaction times depend on their internal ex-
pectations. In total, our predictions r(t) contain three pa-
rameters (b , r0, and r1), which must be estimated from
the data for each participant. To estimate the model pa-
rameters that best describe a participant’s reaction
times r(t) (more specifically, their reaction time residuals
from the linear mixed-effects model described above),
we minimized the root mean squared prediction error
(RMSE) with respect to each participant’s observed re-

action times, RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
t

ðrðtÞ � r̂ðtÞÞ2
r

. We note that,

for a given b , the parameters r0 and r1 can be calcu-
lated using linear regression. Thus, the problem of esti-
mating the model parameters can be restated with only
one parameter; that is, by minimizing the RMSE with re-
spect to b .
Because we wished to compare results from these

models to neural data, we only run this analysis on each
of the participants with neural data, and exclude trials that
contained interictal epileptiform discharges (IEDs). To
minimize the RMSE with respect to b , we began by calcu-
lating the RMSE along 100 logarithmically spaced values
for b between 10�4 and 10. Then, starting at the minimum
value of this search, we performed gradient descent until
the gradient fell below an absolute value of 10�6. The
search also terminated if b reached 0, or was trending to-
ward 1 (.1000). The b values that were terminated at 0
or 1000 are referred to as extreme values throughout the
manuscript.
Once b values were fitted for each participant, the es-

timated latent space Â could be obtained with the equa-
tion: Â ¼ ð1� e�b ÞAðI� e�bAÞ�1, where A is the true
latent space that defines transition probabilities be-
tween stimuli. This analytic prediction reflects the esti-
mated latent space for a participant that viewed an
infinite random walk, and does not take into account the
statistics of the particular sequence observed by a
given participant.
In addition to calculating each participant’s estimated

latent space, we also wished to understand how the esti-
mate would evolve over time assuming a static b . A par-
ticipant’s expected likelihood of a transition between two

elements i and j at time t is given by ÂðtÞ ¼ enijðtÞX
k

enikðtÞ
,

where enij is a participant’s recollection of the number of
times they have observed stimulus i transition to stimulus
j. We can then use b to solve for the expected number of

transitions as enijðt11Þ ¼ enijðtÞ1
Xt�1

Dt¼0

1
Z
e�bDtd ði ¼ xt�DtÞ.

Here, d (.) is a d function that gives a value of 1 when its ar-
gument is true and 0 otherwise, and Z is a normalization
constant.

Intracranial recordings
All patients included in this study gave written informed

consent in accord with the University of Pennsylvania
Institutional Review Board for inclusion in this study. De-
identified data were retrieved from the online International
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Epilepsy Electrophysiology Portal (Wagenaar et al., 2018).
All data were collected at a 512-Hz sampling rate.

Preprocessing
Electric line noise and its harmonics at 60, 120, and

180Hz were filtered out using a zero phase distortion
fourth order stop-band Butterworth filter with a 1-Hz
width. This filter was implemented using the butter() and
filtfilt() functions in MATLAB. Impulse and step responses
of these filters were visually inspected for major ringing
artifacts.
We then sought to remove individual channels that

were noisy, or had poor recording quality. We first re-
jected channels using both the notes provided and auto-
mated methods. After removing channels marked as low
quality in the notes, we further marked electrodes that
had (1) a line length greater than three times the mean
(Ung et al., 2017); (2) a z-scored kurtosis .1.5 (Betzel et
al., 2019); or (3) a z-scored power-spectral density dissim-
ilarity measure .1.5 (Betzel et al., 2019). The dissimilarity
measure was the average of one minus the Spearman’s
rank correlation with all channels. These automated meth-
ods should remove channels with excessive high fre-
quency noise, electrode drift, and line noise, respectively.
All contacts selected for removal were visually inspected
by a researcher with six years of experience working with
iEEG data (J.S.). The final set of contacts was also visually
inspected to ensure that the remaining contacts had good
quality recordings by the same researcher. Including re-
moval of contacts outside of the brain, on average, 48.87
6 22.50% of contacts were removed, leaving 896 30
contacts.
Data were then demeaned and detrended. Detrending

was used instead of a high-pass filter to avoid inducing fil-
ter artifacts (de Cheveigné and Nelken, 2019). Channels
were then grouped by grid or depth electrode, and com-
mon average referenced within each group. Recordings
from white matter regions have sometimes been used as
reference channels (Li et al., 2018). However, work show-
ing that channels in white matter contain unique informa-
tion independent from nearby gray matter motivated us
to include them in the common average reference
(Mercier et al., 2017). Following the common average ref-
erence, plots of raw data and power spectral densities
were visually inspected by the same expert researcher
with six years of experience working with electrocorticog-
raphy data (J.S.) to ensure that data were of acceptable
quality.
Next, data were segmented into trials. A trial consisted

of the time that a given stimulus was on the screen before
a response occurred. iEEG recordings were matched to
task events through the use of a photodiode during task
completion (see above, iEEG experiment). Periods of high
light content were automatically detected using a custom
MATLAB script. Identified events were then visually in-
spected for quality. The times of photodiode change were
then selected as the onset and offset of each trial. Two
participants had poor quality photodiode data that could
not be segmented, and these participants were

accordingly not included in electrophysiological analyses,
leaving 11 remaining participants.
Lastly, trials were rejected if they contained interictal

epileptiform discharges (IEDs). IEDs have been shown to
change task performance (Ung et al., 2017) and aspects
of neural activity outside of the locus of IEDs (Dahal et al.,
2019; Stiso et al., 2021). We chose to use an IED detector
from Janca et al. (2015) because it is sensitive, fast, and
requires relatively little data per participant. This Hilbert-
based method dynamically models background activity
and detects outliers from that background. Specifically,
the algorithm first downsamples the data to 200Hz and
applies a 10- to 60-Hz bandpass filter. The envelope of
the signal is then obtained by taking the square of this
Hilbert-transformed signal. In 5-s windows with an over-
lap of 4 s, a threshold k is calculated as the mode plus the
median and used to identify IEDs. The initial k value is set
to 3.65, which was determined through cross-validation in
Janca et al. (2015). In order to remove false positives po-
tentially caused by artifacts, we apply a spatial filter to the
identified IEDs. Specifically, we remove IEDs that are not
present in a 50-ms window of IEDs in at least three other
channels. The 50-ms window was consistent with that
used in other papers investigating the biophysical proper-
ties of chains of IEDs, which tended to last ,50ms
(Conrad et al., 2020).

Contact localization
Broadly, contact localization followed methodology

similar to Revell et al. (2021). All contact localizations
were verified by a board-certified neuroradiologist (J.M.
S.). Electrode coordinates in participant T1w space were
assigned to an atlas region of interest and also registered
in participant T1w space. Brain region assignments were
assigned first based on the AAL-116 (Tzourio-Mazoyer et
al., 2002) atlas. This atlas extends slightly into the white
matter directly below gray matter, but will exclude con-
tacts in deeper white matter structures. For a list of the
number of contacts in each region of this atlas, see Table
2. To provide locations for contacts outside the AAL atlas,
we use the Talairach atlas (Brett et al., 2001). Assignment
of contacts to a hemisphere was also done using the
Talairach atlas label. If the contact was outside of the
Talaraich atlas, then the AAL atlas hemisphere was used.
If a contact was outside both atlases, then the contact
name taken from https://www.ieeg.org/ was used (con-
tact names include the hemisphere, electrode label, and
contact label).

Similarity analysis
In this work, we sought to identify which electrode

contacts have neural activity that reflected a partici-
pant’s estimate of the latent space in a data driven
manner. To identify these contacts, we used a similarity
analysis that compared Â, the participant’s estimation
of latent space, to the similarity of neural activity evoked
by each stimulus. This approach was used to abstract
similarity patterns in high-dimensional neural activity
into dissimilarity matrices, and allowed us to answer the
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question “Where does neural activity reflect the latent
space?” (Kriegeskorte et al., 2008). These matrices can
then be compared with similarity patterns obtained
from our computational model, Â.
Here, we chose the cross-validated Euclidean distance

as our neural similarity metric because it was shown to
lead to more reliable classification accuracy when com-
pared with other dissimilarity metrics (Walther et al.,
2016). To compute similarity matrices for each contact,
we first truncated all trials of preprocessed iEEG record-
ings to be the same length as the trial with the shortest re-
action time. If the shortest reaction time was,200ms, we
instead used 200ms as the minimum length and dis-
carded trials shorter than that. This truncation was done
in three ways: (1) stimulus aligned, where the end of trials
was truncated; (2) middle aligned, where the middle of

trials was truncated; and (3) response aligned, where the
beginning of trials was truncated. We then calculated the
leave-one-out cross-validated Euclidean distance be-
tween activity evoked from each of the 10 unique stimuli.
This procedure resulted in one dissimilarity matrix for
each contact. To compare these matrices to the esti-
mated latent space, we then calculated the correlation be-
tween the lower diagonal of the neural dissimilarity matrix
and Â. Because Â reflects similarity rather than dissimilar-
ity, we then multiplied the resulting correlation by �1.
To identify electrode contacts with high similarity to the

latent space, we compared the correlations between the
neural dissimilarity and the estimated latent spaces to
correlations between a distribution of 100 null neural dis-
similarity matrices and estimated latent spaces. Null mat-
rices were calculated from permuted data created by first

Table 2: Gray matter contacts

AAL region Visual count Latent count Visual (%) Latent (%) Total count
Amygdala 1 3 9.09 27.2727273 11
Angular 1 0 11.11 0 9
Calcarine 2 0 28.57 0 7
Caudate 0 0 0 0 6
Cerebellum_4_5 1 0 100 0 1
Cingulum_Ant 0 0 0 0 3
Cingulum_Mid 0 0 0 0 1
Cingulum_Post 0 1 0 16.6666667 6
Cuneus 0 0 0 0 1
Frontal_Inf_Oper 0 1 0 14.2857143 7
Frontal_Inf_Orb 0 1 0 8.33333333 12
Frontal_Inf_Tri 10 2 19.23 3.84615385 52
Frontal_Med_Orb 0 0 0 0 2
Frontal_Mid 3 1 16.61 5.55555556 18
Frontal_Mid_Orb 0 0 0 0 3
Frontal_Sup 1 1 10 10 10
Frontal_Sup_Orb 0 0 0 0 2
Fusiform 4 5 8.69565217 10.8695652 46
Heschl 0 0 0 0 2
Hippocampus 4 2 7.84313725 3.92156863 51
Insula 1 2 4.76190476 9.52380952 21
Lingual 0 0 0 0 5
NotInAtl 25 11 9.65250965 4.24710425 259
Occipital_Inf 1 0 20 0 5
Occipital_Mid 0 0 0 0 9
Olfactory 0 0 0 0 1
Pallidum 0 0 0 0 1
ParaHippocampal 1 1 4.34782609 4.34782609 23
Parietal_Inf 1 0 16.6666667 0 6
Parietal_Sup 0 0 0 0 1
Postcentral 0 1 0 9.09090909 11
Precentral 4 2 23.5294118 11.7647059 17
Precuneus 1 0 33.3333333 0 3
Putamen 0 0 0 0 5
Rectus 1 0 100 0 1
Rolandic_Oper 0 0 0 0 12
Supp_Motor_Area 0 0 0 0 5
SupraMarginal 0 0 0 0 7
Temporal_Inf 5 5 4.62962963 4.62962963 108
Temporal_Mid 4 6 3.30578512 4.95867769 121
Temporal_Pole_Mid 2 0 18.1818182 0 11
Temporal_Pole_Sup 1 0 20 0 5
Temporal_Sup 2 1 6.06060606 3.03030303 33

The locations of all contacts in the AAL atlas.
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selecting a random trial number and then splitting and re-
versing the order of trials at that point. For example, if 128
were drawn as a random trial number, the corresponding
permuted dataset would be neural data from trials 129–
1000 followed by neural data from trials 1–128 matched
with stimuli labels from the correct order of trials (1–1000).
This model preserved natural features of autocorrelation
in the neural data, unlike trial shuffling models (Aru et al.,
2015). Contacts were determined to have activity similar
to the latent space if they met two criteria: (1) the correla-
tion between the neural dissimilarity matrix and the Â was
greater than at least 95 null models, and (2) the correlation
between the neural dissimilarity matrix and the Â was
greater than the correlation between the neural dissimilar-
ity matrix and the exact latent space A. Because we only
require that contacts have similarity values .95% of null
models and the correlation with the exact latent space,
we expect a rate of false positives among contacts of
close to (but less than) 5%. Therefore, we focus our dis-
cussion on regions where .5% of the total contacts were
retained.
To test the specificity of our findings, we also examined

the correlation between the dissimilarity matrices and a
similarity space related to the lower-level features of the
stimuli. We calculated a spatial similarity matrix that re-
flected the physical distance between stimuli on the
screen. Since each stimulus consists of a single red
square among nine black squares on the screen, we cal-
culated the Euclidean distance between each square, and
used this matrix as an estimate of spatial similarity. We
then repeated the process detailed above for obtaining
correlations relative to permuted neural data.

Low-dimensional projections and linear
discriminability
For visualization purposes, we sought to obtain low-di-

mensional representations of the neural dissimilarity mat-
rices. Classical multidimensional scaling (MDS) obtains
low-dimensional (here, two dimensional) representations
of Euclidean distance dissimilarity matrices that seek to
preserve the distances of the original higher-dimensional
data (Wang, 2013). Classical MDS was implemented
using the cmds() function in MATLAB. For neural data, we
first calculated a single neural dissimilarity matrix, rather
than a single matrix per contact. This calculation was
done by concatenating activity from every contact whose
activity was similar to the latent space (see above,
Similarity analysis), and then by repeating the process out-
lined above.
For some analyses, we wished to compare the low-di-

mensional representations of neural dissimilarity matrices
with the low-dimensional representations of estimated
latent spaces. Since estimated latent spaces are not
Euclidean distance matrices, classical MDS is not an ap-
propriate dimensionality reduction technique (Wang,
2013). Instead, we use principal components analysis
(PCA). PCA yields the same low-dimensional embedding
as classical MDS when the high-dimensional data are
Euclidean distances, but not otherwise. We computed the
principal components of the neural dissimilarity matrices

and estimated latent spaces in MATLAB using the pca()
function. The scaled and centered data were then pro-
jected onto the first two principal components to obtain
two coordinates for each node.
From these low-dimensional data, we next sought to

assess estimates of discriminability between modules.
Module discriminability was calculated as the loss from a
linear discriminant analysis. A linear classification model
was fit to the low-dimensional coordinates using the fit-
discr() function in MATLAB. The proportion of nodes that
were incorrectly classified using the best linear boundary,
or the loss, was then reported as an estimate of the linear
discriminability of modules.

Statistical analyses
Linear mixed-effects models were used to analyze re-

action time data, and the results are displayed in Figure 2.
Mixed-effects models were used to account for the fact
that trials completed by the same participant constitute
repeated measures and are not independent. The esti-
mated b values were evaluated with t tests, and appear
to be approximately normally distributed. Extreme values
of b (0 or 1000) were removed from any statistical tests to
ensure normality. Linear mixed-effects models were used
to analyze changes in neural similarity over time, with par-
ticipant included as a random effect. A paired t test was
used to analyze changes in loss from a linear classifier.

Data and code
Code is available in the GitHub repository https://

github.com/jastiso/statistical_learning. Electrophysiological
data will be made available on request from the IEEG
portal.

Citation diversity statement
Recent work in several fields of science has identified a

bias in citation practices such that papers from women
and other minority scholars are undercited relative to the
number of such papers in the field (Maliniak et al., 2013;
Mitchell et al., 2013; Caplar et al., 2017; Dion et al., 2018;
Bertolero et al., 2020; Dworkin et al., 2020; Chatterjee and
Werner, 2021; Fulvio et al., 2021; Wang et al., 2021). Here,
we sought to proactively consider choosing references
that reflect the diversity of the field in thought, form of
contribution, gender, race, ethnicity, and other factors.
First, we obtained the predicted gender of the first and
last author of each reference by using databases that
store the probability of a first name being carried by a
woman (Dworkin et al., 2020; Zhou et al., 2022). By this
measure (and excluding self-citations to the first and
last authors of our current paper), our references contain
10.0% woman(first)/woman(last), 11.3% man/woman,
18.8% woman/man, and 55.0%man/man. This method is
limited in that a) names, pronouns, and social media pro-
files used to construct the databases may not, in every
case, be indicative of gender identity and b) it cannot ac-
count for intersex, nonbinary, or transgender people.
Second, we obtained predicted racial/ethnic category of
the first and last author of each reference by databases
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that store the probability of a first and last name being
carried by an author of color (Ambekar et al., 2009; Sood
and Laohaprapanon, 2018). By this measure (and exclud-
ing self-citations), our references contain 8.86% author of
color (first)/author of color(last), 10.82% white author/au-
thor of color, 20.19% author of color/white author, and
60.13% white author/white author. This method is limited
in that (1) names and Florida Voter Data to make the pre-
dictions may not be indicative of racial/ethnic identity,
and (2) it cannot account for Indigenous and mixed-race
authors, or those who may face differential biases be-
cause of the ambiguous racialization or ethnicization of
their names. We look forward to future work that could
help us to better understand how to support equitable
practices in science.

Results
Quantification of learning and temporal discounting
In this work, we are interested in the neural underpin-

nings of latent space estimation. Before investigating
the neural dynamics directly, we tested whether partici-
pants learned the latent space and responded both
faster and more accurately to stimuli over time. Our co-
hort of interest, the iEEG cohort, were all undergoing
monitoring for medically refractory epilepsy. Because of
the rarity of this population, it is often difficult to get
large cohorts suitable for good estimates of behavioral
effect sizes. Additionally, the epileptic population in the
iEEG cohort has been shown to have cognitive impair-
ments (Parvizi and Kastner, 2018), which requires tasks
that have been designed to be comparatively easy and
quick to complete. Because of these challenges, we
also collected data from 50 participants from Amazon’s
mTurk.
In both cohorts, we were interested in the change over

time of two estimates of learning: accuracy and reaction
time. Across participants, we found that the average ac-
curacy for the mTurk cohort was 94.0 6 3.76%, with a
median reaction time of 602.56134.0ms. For the iEEG
cohort, the mean accuracy was 97.7 6 2.50% with a me-
dian reaction time of 721.26 180.9ms. We were also in-
terested in determining whether the rate of learning
differed between two graph types (Fig. 1A). We used line-
ar mixed-effects models to assess learning based on in-
creases in accuracy and decreases in reaction times
on two time scales. The first, shorter timescale is that of
individual trials; to examine learning on this timescale
we tested for decreases in reaction time associated
with increasing trial number. Since this task provided
breaks after each 250-trial stage, we also assessed
learning at the longer timescale of individual stages. To
examine learning on this timescale, we tested for de-
creases in reaction time with increasing stages. In the
mTurk cohort (n = 47), we found that reaction times tend
to decrease only at the trial level (linear mixed-effects
model Ftrial ¼ 16:1;ptrial ¼ 9:51� 10�5, Fstage = 0.005,
pstage = 0.946; Fig. 2C). In the iEEG cohort (n = 13), we
found that reaction times decrease only at the stage
level (linear mixed-effects model Ftrial = 1.16, ptrial =

0.320, Fstage = 3.86, pstage = 0.049; Fig. 2C). For accu-
racy, we found that the mTurk cohort shows a signifi-
cant decrease in accuracy with trials (linear mixed-
effects model ztrial = –2.48, ptrial = 0.013, zstage = 1.93,
pstage = 0.054; Fig. 2D). For the iEEG cohort we observe
no significant linear change with trial (linear mixed-ef-
fects model ztrial = –0.025, ptrial = 0.98, zstage = 0.289,
pstage = 0.773; Fig. 2D). However, we qualitatively ob-
served a quadratic relationship, where accuracy initially
increased before decreasing with trial number. We
tested the statistical significance of this observation
with a mixed-effects model that relates accuracy to
trial2. We found that the quadratic trial estimate is a sig-
nificant predictor of accuracy (linear mixed-effects
model ztrial2 ¼ �2:6; ptrial2 ¼ 0:009; Fig. 2D).
We also sought to determine whether participants

showed evidence of learning the underlying latent space
in addition to the task. We tested for evidence of sensi-
tivity to the underlying latent space in two ways: (1) a
difference in reaction time based on graph type, and
(2) a difference in reaction time based on module transi-
tion in the modular graph. In the mTurk cohort, we
found that there was no difference in reaction time (line-
ar mixed-effects model Fgraph = 0.013, pgraph = 0.910)
or in learning rate (Ftrial�graph ¼ 0:043ptrial�graph ¼ 0:834;
Fstage�graph ¼ 0:002; pstage�graph ¼ 0:966; Fig. 2C) be-
tween the graphs. There were also no significant
changes in accuracy associated with graph type (linear
mixed-effects model zgraph = –0.186, pgraph = 0.853,
ztrial�graph ¼ �0:818; ptrial�graph ¼ 0:414; zstage�graph ¼ 1:121;
pgraph�stage ¼ 0:225; Fig. 2D). In the iEEG cohort, we found
no differences in reaction time (Fgraph = 1.63, pgraph =
0.300), but there was a significant interaction between learn-
ing rate and graph type at the stage level (Fgraph�trial ¼ 4:70;
ptrial�graph ¼ 0:072; Fstage�graph ¼ 14:3; pstage�graph ¼ 1:52�
10�4; Fig. 2C). There was also a significant interaction
between accuracy and graph type (linear mixed-effects
model, zgraph = –2.6, pgraph = 0.711, ztrial�graph ¼ 2:30;
ptrial�graph ¼ 0:022; zstage�graph ¼ 1:94; pstage�graph ¼ 0:052;
Fig. 2D).
We next tested whether reaction times reflected a

sensitivity to the modules in the modular graph. We ex-
pected that reaction times would decrease for within-
module transitions relative to between-module transitions
(Kahn et al., 2018). In our mTurk cohort, we observe sig-
nificantly slower reaction times on cross-cluster trials,
compared to within-cluster trials (linear mixed-effects
model, Fcross�module ¼ 11:0; p ¼ 3:4� 10�3). In our iEEG
cohort, we do not find a significant difference in reaction time
across modules (linear mixed-effects model, Fcross–module =
0.93, p=0.36). Overall, we found that the iEEG cohort
showed evidence of learning in both accuracy and reac-
tion time. While the mTurk cohort showed quicker de-
creases in reaction time, these were coupled with
decreases in accuracy. Additionally, we find that the
mTurk cohort showed sensitivity to the latent space
through cross-module transitions, while the iEEG cohort
had steeper learning on the lattice graph (n= 4) com-
pared with the modular graph (n= 9). Ultimately, both co-
horts show evidence for learning the task and the latent
space, but in different ways.

Research Article: New Research 12 of 24

March/April 2022, 9(2) ENEURO.0361-21.2022 eNeuro.org



After we confirmed that participants learned the task,
we quantified each participant’s steepness of temporal
discounting. For both cohorts, we calculated the parame-
ter b by fitting a maximum entropy model to the residuals
of reaction times from the linear mixed-effect model dis-
cussed above. This parameter indicates the prioritization
of accurate latent space estimations against the cost of
those accurate representations, as evidenced by each
participant’s behavior (Fig. 1B,C). The parameter b was
fit with gradient descent, assuring that the fit for each par-
ticipant was comparable, with the exception of the ex-
tremes of the distribution of possible b values (b = 0 and
b ¼ 1). However, each extreme value has a different in-
terpretation. A fitted value of b = 0 indicates that there is
no evidence of temporal discounting or any sensitivity to
sequence statistics in a participant’s reaction times. The
corresponding estimate Â of the latent transition probabil-
ities will show equally likely transitions between all nodes.
A fitted value of b ¼ 1 indicates no influence of the cost
of building accurate representations but a high sensitivity
to the statistics of the sequence. At long time scales, their
estimate Â will converge to the actual latent space, but at
short time scales, their estimates will reflect the local statis-
tics of the specific sequence. To provide additional empiri-
cal evidence for our interpretation of extreme b values, we
used a linear mixed-effects model to test for reaction time
differences between individuals with b values of 0 and b
values of1 in our mTurk cohort. We hypothesized that the
high sensitivity to sequence statistics in individuals with
b ¼ 1 would lead to initially slow reaction times that
quickly sped up as the latent space was learned. Using a
linear-mixed effect model containing an interaction be-
tween trial number and b , we find a significant effect for
the b value (F=5.69, p=0.029), and for the interaction be-
tween b and reaction time (F=7.51, p=0.01). These re-
sults show that individuals with b ¼ 1 have larger
reaction times and steeper learning than individuals with b
= 0, which support our interpretation of the extreme values.
Because the gradient descent algorithm terminated if b

approached 0 or 1, we assessed the similarity of tempo-
ral discounting, operationalized as similar b values, be-
tween cohorts with two measures: (1) the percent of
participants where b approached one of these extremes;
and (2) the distribution of b values found between these
two extremes. Additionally, all parametric statistical tests
that used b values were applied after extreme values
were removed, thus ensuring the normality of the b distri-
bution. We first examined the percentage of participants
who had b values at the extremes of the distribution. In
the mTurk cohort, we found that 29.8% (or 14 partici-
pants: seven modular and seven lattice) had b values
equal to 0, indicating no evidence for sensitivity to se-
quence statistics from their reaction times. For the iEEG
cohort, we found that 7.7% (or one participant: modular)
of participants had b values equal to 0. In the mTurk co-
hort, we found that 12.8% (or six participants: two modu-
lar and four lattice) had b values equal to 1, indicating
high sensitivity to sequence statistics. For the iEEG co-
hort, we found that 15.4% (or two participants: both lat-
tice) had b values equal to 0.

We next assessed differences in the distribution of log-
distributed b values in both cohorts. The mTurk cohort
had a mean b value of 0.94 and showed no differences
across graph types (permutation test: p=0.11; Fig. 2E).
The iEEG cohort had a mean b value of 0.17 and was not
statistically different from the mTurk cohort (permutation
test: p=0.53; Fig. 2E). As these data indicate, we found
similar temporal discounting levels among both groups,
although the mTurk cohort had more participants with ex-
treme values. We note that b values tend to be ,1, indi-
cating a high prioritization of the costs of building
accurate representations. Since this amount of temporal
discounting resulted in estimated latent spaces that are
different from true latent spaces, we next investigated
neural activity reflecting these estimated latent spaces.

Anatomical areas where activity reflects latent space
estimation
We used a similarity analysis in a data driven manner to

identify which contacts showed activity with a similar
structure to the estimated latent space. First, we calcu-
lated the similarity structure of neural activity by calculat-
ing the cross-validated Euclidean distance between the
activity evoked for each stimulus (Fig. 3A). To ensure that
all stimuli had activity of the same length, the last time
points of all trials were removed to create epochs the
length of the shortest trial. We also report results based
on removing the first and middle time points to reach the
same length. We then selected the contacts where this
neural similarity structure was closest to the estimated la-
tent space, and closest to the visual Euclidean distance
(see Materials and Methods; Fig. 3A).
The resulting contacts from all participants are visual-

ized on a shared space (MNI; Fig. 3B). Between 2 and 10
contacts displayed activity whose dissimilarity matrices
were similar to those of the latent space per participant.
Qualitatively, we observed that contacts that reflect latent
and Euclidean space appear in the frontal and temporal
lobes, with some overlap between the two groups.
Overall, 46 (5.0%) contacts spanning all participants were
identified as reflecting the latent space, and 76 (8.3%)
were identified as reflecting the Euclidean space. For the
latent space, 32 (5.1%) contacts were from the right hemi-
sphere and 14 (4.5%) contacts were from the left hemi-
sphere. We note that we expect to select more visual than
latent space sensitive contacts because visual space cor-
relations were not required to be larger than the correla-
tions to the true latent space. We also show separate
visualizations for participants with modular and lattice
graphs, respectively (Fig. 3B). Qualitatively, we observe a
large overlap in the identified regions between the two
graph types.
We next sought to localize identified contacts in each

participant’s native space. The most common AAL atlas
labels for latent space contacts are shown in Figure 3C.
We found the most common regions identified were the
middle temporal lobe (six contacts 5.0%), fusiform gyrus
(five contacts, 11.0%), inferior temporal lobe (five con-
tacts, 4.6%), and amygdala (three contacts, 27.3%). The
middle temporal lobe and amygdala also showed the
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most selectivity for the latent space compared to
the visual space. Contacts located in white matter were
localized with the Talaraich atlas. Most often, these con-
tacts were in extranuclear, frontal or temporal sublobar
white matter. We also looked explicitly at contacts in the

hippocampus and entorhinal cortex, and identified 4 con-
tacts in the hippocampus that reflect the estimated latent
space and four that reflect that visual space (3.9%). We
identified one contact in the parahippocamal gyrus (which
contains both the parahippocampal cortex and the
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entorhinal cortex in the AAL atlas) that reflects the esti-
mated latent space (4.3%). Upon visual inspection, this
contact is located in the anterior part of the parahippo-
campal gyrus, and therefore is likely part of the parahip-
pocampal cortex rather than the entorhinal cortex.
Information for all regions is given in Table 2. We note that
the most common regions identified for latent space con-
tacts were in lateral, ventral, and medial temporal lobe.
While frontal contacts still showed neural dissimilarity
consistent with that of the latent space, the specific ana-
tomical location of these contacts were not consistent
across participants.
The above similarity analysis was based on data that was

aligned to stimulus presentation, and hence captured the
initial evoked response to the stimulus. To examine whether
other portions of the response data produced the same
structure, we repeated this analysis with response-aligned
trials (removing the first time points), and middle-aligned tri-
als (removing the middle time points; Fig. 3D,E). When trials
were aligned to the response, we found that fewer contacts
were identified whose activity reflected the latent space,
although such contacts were still identified in each partici-
pant. Overall, we found 36 (3.9%) contacts showed activity
similar to the estimated latent space, and 44 (4.8%) contacts
showed activity similar to the visual space. For latent space
contacts, 24 (3.9%) were in the left and 12 (4.0%) in the right
hemisphere. We found one region, the fusiform gyrus (5
contacts 10.9% for response-aligned), that included multi-
ple contacts for both response-aligned and stimulus-aligned
activity. Unlike the stimulus-aligned similarity, the response-
aligned similarity also identified the inferior frontal gyrus (the
pars orbitalis, pars triangularis, and pars opercularis; 4,
7.7%), insula (3, 14.3%), and supplemental motor area (3,
60%) as important regions. For the middle-aligned activity,
we found 52 (5.7%) contacts showed activity reflecting the
latent space and 65 (7.1%) showed activity reflecting the
visual space (Fig. 3D). Among these latent space contacts,
39 (6.3%) were in the left hemisphere and 13 (4.4%) were in
the right hemisphere. We found that most identified regions
overlap with those identified for stimulus-aligned and re-
sponse-aligned activity. Specifically, we found that the
areas most commonly displaying activity that reflects the la-
tent space are located in the middle temporal lobe (10,
8.3%), the fusiform gyrus (4, 8.7%), the inferior frontal gyrus
(4, 7.7%), and the inferior temporal cortex (4, 3.7%; Fig. 3E).
These results suggest that our findings from response-
aligned and stimulus-aligned activity are not driven by the
activity of the middle of the trial. Overall, we found that early
stimulus-evoked activity shows greatest similarity to the es-
timated latent space in higher-order temporal regions,
whereas later response-locked activity shows more similar-
ity to the estimated latent space in frontal and especially
premotor regions.

Module discriminability in low-dimensional space
Many of our hypotheses about low-dimensional projec-

tions of neural activity build on prior evidence in the hip-
pocampus. To be more consistent with this literature, the
remaining analyses considered only the stimulus-locked
neural dissimilarity matrices, where the medial temporal

lobe contacts most reflected the estimated latent space.
We visualized low-dimensional projections of neural activ-
ity across all of the contacts that demonstrated similarity
to the estimated latent space (Fig. 4). These low-dimen-
sional projections were obtained for each participant by
first creating a single dissimilarity matrix for all contacts
whose activity was similar to the latent space, and then
computing classical MDS on those matrices. From these
low-dimensional projections, we can observe the diversity
of estimated structures, and the ways in which they reflect
and differ from the exact latent space that generated the
sequences of images (Fig. 4). One notable property of
participants who experienced sequences from modular
graphs is that modules (green and pink) appear to be
mostly separable. All participants appear to highly accu-
rately separate the two modules, even when activity from
diverse regions is included.
We next wished to test whether this modular separabil-

ity in low-dimensional neural activity is also present in la-
tent spaces estimated from behavior. If modules are
separable in both spaces, then temporally discounted
space estimations might be sufficient to explain separa-
bility. If separability is only present in neural spaces, then
further computations are likely needed to explain separa-
bility. We test for module discriminability using a linear
discriminant analysis on low-dimensional coordinates ob-
tained from principal components analysis applied to neu-
ral distance matrices and on the estimated latent space
(see Methods). We find that for most participants, discrim-
inability varied little between the data from neural dissimi-
larity and from the estimated latent space (paired t test t =
–1.04, p=0.344; Fig. 5A). However, two participants
showed much lower discriminability for the estimated la-
tent space, compared with the neural dissimilarity space
(Fig. 5A). We next sought to test whether discriminability
for estimated latent spaces was specific to a particular
range of b values. We find that participants with higher b
values show perfect discriminability whereas participants
with lower b values do not (Fig. 5B). Visualization of the
low-dimensional projections from different b values
shows that the poor discriminability was driven by the
nodes with connections to other modules (Fig. 5C). More
specifically, at a b value close to 0.1, we see an abrupt
shift where nodes connecting two modules switch from
being closer to their corresponding module, to being clos-
er to the contrasting module. Taken together, these find-
ings provide evidence for module discriminability in neural
activity. However, whether that discriminability is pre-
dicted by the estimated latent space alone depends on
the participant and diminishes for those participants char-
acterized by low b values.

Temporal dynamics of latent space formation
In a final investigation, we sought to model how the es-

timated latent space might change during learning, and
test whether neural activity showed similar temporal
patterns. Assuming that b values are static during the
course of learning, we can simulate how the estimated
latent space Â changes on each trial because of each
new transition observed between stimuli. We then
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calculated the correlation between the current estimated
latent space at each trial ÂðtÞ and the estimated latent
space obtained using the infinite trial limit Â (Fig. 6A).
Since participants only observed a finite walk, the
quantity ÂðtÞ does not converge to exactly Â. However,
most participants quickly show high agreement between
the finite and infinite-time estimates as they learn.
Qualitatively, we see that larger b values result in a faster
convergence toward the final Â regardless of the graph
type (Fig. 6A,B).
Informed by these data, we hypothesized that neural

activity structure would also reflect the estimated latent
space Â fairly early during learning. In order to ensure that

we had enough trials to get stable estimates of activity
structure, we tested this hypothesis by recalculating the
correlation between the latent space and neural dissimi-
larity matrices in sliding blocks of 500 trials with a 100-
trial offset. This process provided a total of 6 blocks. We
recomputed these correlations only in individual contacts
(n ranged from 2 to 10) whose activity was determined to
be similar to the estimated latent space (Fig. 3). We also
calculated the correlation to the visual space in these
same contacts as a comparison (Fig. 6C). Since we
wished to capture the dynamics of contacts converging
to their final values rather than differences in those final
values, we normalized all correlation coefficients to the
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values calculated using all trials. We then averaged similarity
values over all contacts and used a linear mixed-effects
model to assess whether participants’ neural activity was
more similar to the estimated latent space than the visual
space, and if that similarity grew over time. In line with our
hypothesis, we found significantly larger increases in corre-
lation coefficients between the neural space and the latent
space than in correlation coefficients between the neural
space and visual space (linear mixed-effects model
Fwindow�space ¼ 6:755; pwindow�space ¼ 0:011), even in the
first 500 trials (paired t test t=3.81, p=0.004).

We next asked whether these changes in similarity were
modulated by b values or by graph type. Our simulations
suggest that participants with larger b values should
show greater similarity to the latent space early during
learning. Accordingly, we tested whether b values pre-
dicted the magnitude and rate of change of the normalized
correlation coefficients between neural activity and the
estimated latent space. We found significant changes in
the magnitude of the normalized correlations associated
with b values, as evidenced by a significant interaction be-
tween b values and the change in similarity over blocks
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(linear mixed-effects model Fb ¼ 2:65; pb � 0:110; Fwindow�
b ¼ 6:12; pwindow�b ¼ 0:017; Fig. 6D). Specifically, smaller
b values have positive relationships between the neural simi-
larity to the estimated latent space and the trial window (in-
creasing with learning), whereas larger b values have
negative relationships. While the observed variation in the
convergence of neural data to Â by b value was recapitu-
lated in our simulations, we saw an additional trend toward
less convergence over time that is not present in themodel.
We also wished to determine whether changes in simi-

larity (between neural activity and the latent space) over
time were consistent across graph types, as predicted
by our simulations. We found a significant interaction
between the change in similarity over blocks and the
graph type, which was not predicted by our model (lin-
ear mixed-effects model Fgraph = 5.06, p = 0.029; Fig.
6E). Participants who saw sequences from lattice
graphs tended to have more positive slopes, whereas
participants who saw sequences from modular graphs
tended to have more negative slopes. It is worth noting
that this separation by graph type reflects the signifi-
cant interaction observed between reaction time and
graph type in this same cohort.
Lastly, we sought to examine whether the discrepan-

cies between our simulations and observations could be
narrowed by relaxing the assumption that b values re-
main static during learning, and instead hypothesizing
that finite-time estimates of b per block would diverge
more from the infinite-time estimates of b in the later
windows. To test this hypothesis, we recalculated b
values for each participant in the same blocks of 500
trials. We then tested whether b values changed con-
sistently across the population over blocks of trials.
While we observed substantial variability in b values
for some participants, there were no consistent differ-
ences across the population (linear mixed-effects
model Fwindow = 0.14, pwindow = 0.714; Fig. 6F,G).

Discussion
In this work, we sought to better understand the neural

correlates of latent space estimation from temporal se-
quences of stimuli that evince particular transition proba-
bility structures encoded as graphs. We used behavioral
modeling to identify individual variations in temporal dis-
counting and iEEG data recorded during learning to an-
swer four main questions: (1) Do individuals in our iEEG
cohort show behavioral evidence of learning an estimate
of the latent space? (2) Which brain regions have neural
activity that reflects these estimates? (3) Does the struc-
ture of neural activity facilitate the identification of task-
relevant features? (4) Upon what time scale does neural
structure appear, and is that timescale modulated by tem-
poral discounting or graph structure? To answer question
(1), we first had participants respond to cues generated
from two different latent spaces: one with a modular
structure, and one with a lattice structure. We found evi-
dence that our iEEG cohort became faster and more ac-
curate over time, consistent with participants learning the
latent space and better anticipating upcoming stimuli. To
answer question (2), we fit a model of learning that utilizes

temporal discounting during latent space estimation, and
found regions where neural activity has a similar structure
to these estimates. For stimulus-evoked activity, most re-
gions identified, regardless of the graph used to generate
the sequences, were located in the temporal lobe, with
some additional involvement of frontal structures.
Previous work investigating Euclidean spatial represen-

tations found that low-dimensional projections of the esti-
mated space readily identified task-relevant features like
boundaries and modules (Stachenfeld et al., 2014). This
work motivated us to ask question (3), and accordingly to
test whether there was evidence for the same identifica-
tion of modules in our neural data. We found that for each
participant who saw sequences drawn from a modular
graph, low-dimensional projections of neural activity in
the selected temporal and frontal regions accurately sep-
arated each module, misidentifying at most one stimulus.
Interestingly, this separability was not achieved as consis-
tently in the estimated latent space itself, suggesting the
possibility that neural processing enhances the separabil-
ity of task-relevant features such as modules. Lastly, we
leveraged the neural recordings taken during latent space
learning to ask question (4), and accordingly to test pre-
dictions about how quickly participants acquire their esti-
mates of the latent space. Our model predicted that
estimates of the latent space would be formed within the
first 500 trials, and that participants with stronger tempo-
ral discounting would converge faster. We found evidence
in support of these hypotheses, and also additional differ-
ences in latent space learning based on graph type that
were not predicted by our model. Ultimately, we deter-
mined where and when neural activity during a sequential
reaction time task reflects individual variation in behavior,
and how that activity related to recent theories that extend
concrete cognitive maps to abstract spaces.

Insights into probabilistic sequence learning
Previous work in probabilistic sequence learning has

demonstrated that participants reacting to cues drawn
from a random walk on a graph become sensitive to fea-
tures of latent structure for a wide variety of graphs, with
different numbers of stimuli, and across different sensory
domains (Schapiro et al., 2013; Karuza et al., 2017, 2019;
Kahn et al., 2018; Lange et al., 2019; Pudhiyidath et al.,
2020). Here, we significantly extend this literature by
adapting a version of these tasks for use in patient popu-
lations with iEEG recordings. Using our adapted task, we
find that both a healthy cohort recruited via Amazon’s
mTurk and an iEEG cohort show evidence of learning, al-
beit with some differences in the nature of that learning.
We found that our mTurk cohort shows significant de-

creases in reaction time with increasing trial number,
while our iEEG cohort shows decreases only across lon-
ger timescale blocks of 250 trials. While learning rates var-
ied across the two cohorts, iEEG patients still performed
the task with high accuracy (Fig. 2A,B), as expected given
their cognitive capacities (Parvizi and Kastner, 2018). The
slower learning is consistent with other work demonstrat-
ing poorer task performance in participants with epilepsy
compared with controls (Bulteau et al., 2001; Parvizi and

Research Article: New Research 18 of 24

March/April 2022, 9(2) ENEURO.0361-21.2022 eNeuro.org



Kastner, 2018). Patients with drug-resistant epilepsy were
shown to have statistically significant decreases in task
performance assessing motor function and cognitive at-
tention (Motamedi and Meador, 2003), both of which are
required for our experiment. However, our two cohorts
are not matched on demographics or testing environ-
ment, making it difficult to determine whether differences
are because of underlying epilepsy-related cognitive defi-
cits or other factors.
We next tested for evidence of learning based on an in-

crease in accuracy over time. While the mTurk cohort had
relatively high accuracy throughout the experiment, their
performance significantly decreased over time. While in-
creasing speed and decreased accuracy are not neces-
sarily indicative of disengagement from the task (Förster
et al., 2003), this finding raises the possibility that some
of the observed decreases in reaction time might be be-
cause of a decrease in correct responses. One possible
explanation is a decrease in cognitive demand and
arousal, leading to task disengagement and lower accu-
racy (Dehais et al., 2020; van der Wel and van
Steenbergen, 2018). In contrast to the mTurk cohort,
the iEEG cohort shows an initial increase in accuracy,
followed by a decrease in accuracy during later trials.
Individuals with temporal lobe epilepsy tend to perform
worse on tasks that demand higher order cognition and
attention (Hudson et al., 2014); and therefore, it may be
easier to engage with simpler tasks. While this quad-
ratic relationship with accuracy still suggests a lower
engagement with the task as time goes on, it corrobo-
rates the conclusion that the task is better suited for the
iEEG cohort.
The distributions of b values also provide further evi-

dence that the task was not cognitively demanding enough
for the mTurk cohort. We find that ;30% of individuals in
the mTurk cohort had b values equal to 0. This proportion
in larger than the iEEG cohort (approximately 8%), and pre-
vious studies using more complicated tasks (approximately
20%; Lynn et al., 2020a). Some of the disparity between
previous research and our study likely stems from the fact
that we use 500 fewer trials than previous work, which
makes it more difficult for the gradient descent algorithm
used to fit b values to converge. However, the disparity
between cohorts in this study supports the conclusion that
mTurk participants did not rely on the structure of the latent
space as much as iEEG participants.
The decreases in reaction time and increases in accu-

racy with trial number suggest that participants are learn-
ing the task. It is true, however, that these improvements
could be driven by learning features of the task that are in-
dependent of the underlying latent space. We do not think
this explanation is likely, however, because most individu-
als have non-zero values of b despite the short task. To
further demonstrate evidence for learning the underlying
latent space, we tested for differences in reaction time
based on graph type and across modules. Previous re-
search has found that participants tend to react faster to
cues drawn from modular graphs than to those drawn
from lattice or random graphs, and from transitions be-
tween cues within the same module than between cues

that span different modules (Kahn et al., 2018). We reca-
pitulate the cross-module difference finding, but not the
graph type difference finding in our mTurk population.
The latter could be because of the fact that the task we
used was significantly simpler than that previously em-
ployed (Kahn et al., 2018), and hence did not entail the
same learning complexity. There were also design differ-
ences between previous work and the current study; for
example, here we used simpler motor commands (using
one rather than two fingers at a time), fewer trials, breaks
with rewarding feedback, and fewer unique stimuli. In our
iEEG cohort, we found no reaction time differences
across modules, but different rates of learning based on
underlying graph type. However, future work with either a
more complex task or a larger number of subjects is nec-
essary to further validate this result.

Insights into neural involvement in latent space
estimation
To complement our study of behavior, we next probed

the neural correlates of latent space estimation. We iden-
tified regions whose activity has a structure most similar
to each individual’s estimated latent space (rather than to
the true latent space). In performing this identification, we
used a short window of activity locked to the stimulus, to
the response, or to the middle of all trials. In contrast to
the slower temporal resolution of metabolic neuroimaging
techniques, iEEG allows for the use of short temporal win-
dows to investigate neural activity structure in a time-re-
solved manner thereby providing insight not only into
where, but also into when, structural representations
emerge. We also compared two different similarity matri-
ces to rule out possible alternative explanations of the ob-
served structure that were unrelated to the estimated
latent spaces. The first is a null model that takes the em-
pirical trial data, and reorders it around a single point.
Unlike shuffling trial order, this model preserves autocor-
relative features of the data and ensures that the observed
similarity is specific to the observed walk sequence (Aru
et al., 2015); the second comparison is to a lower-level
feature of stimulus appearance: the visual distance be-
tween highlighted stimuli on the screen. We expected this
structure to be reflected in neural activity, and indeed
many regions included contacts that were similar to both
latent and visual spaces. Including these comparisons al-
lows us to assess the selectivity of regional activity for
structural, rather than visual, information.

Stimulus- and response-locked activity implicate
different brain regions
We found that for stimulus-locked activity, the most

common regions identified were in the lateral, medial, and
inferior temporal lobes. It is important to note that the
temporal lobes also have more electrode coverage, and
the identified regions made up between 4.6% and 27.3%
of contacts in those areas; although not all highly sampled
areas (e.g., superior temporal lobe) showed any contacts
that were similar to either space. The presence of struc-
ture in this early evoked response is consistent with work
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demonstrating that changes in tuning curves of neurons
in the hippocampal part of the medial temporal lobe (in
both human and nonhuman primates) reflect statistical
similarities between stimuli (Miyashita, 1988; Reddy et al.,
2015). For response-locked contacts, common areas still in-
clude the fusiform gyrus, but also include the inferior frontal
gyrus, somatomotor area, and insula. This anatomic distribu-
tion is consistent with work showing that later stages of proc-
essing involve frontal regions receiving structural information
from the hippocampus. Further, the involvement of motor re-
gions is certainly intuitive during response planning (Siapas et
al., 2005; Dehaene et al., 2015).

Amygdala involvement in cognitive map formation
The region with both the highest percentage of contacts

identified and the highest selectivity for the latent space was
the amygdala, followed by the middle temporal lobe. The
amygdala is a region often associated with processing of
emotional and rewarding stimuli, and is highly connected to
the hippocampus, with which it interacts during emotional
memory (Phelps, 2004). Notably, some previous work using
single unit human iEEG recordings has also shown activity
reflective of cognitive map building in the amygdala (Fried et
al., 1997; Ekstrom et al., 2003). For example, in a study of
single cell place selectivity in patients undergoing iEEG re-
cording, the hippocampus demonstrated the most place-
selective activity, yet cells in other parts of the medial tem-
poral lobe, including the amygdala, showed selectivity as
well (Ekstrom et al., 2003). Additionally, nonhuman primate
studies have shown representations of abstract contexts for
nonemotional stimuli in the amygdala (Saez et al., 2015).
Ultimately, our results corroborate these findings that amyg-
dala activity can reflect abstract spaces.

Middle temporal lobe involvement in cognitive map
formation
The second region identified, the middle temporal lobe,

has also been identified in other iEEG studies of statistical
learning. Previous work studying lower-level statistical
learning using iEEG also identified primarily lateral tempo-
ral cortex, and little involvement of the hippocampus and
entorhinal cortex (Henin et al., 2021). Much work in
human iEEG and fMRI implicates a broader range of tem-
poral regions than comparable work in rodents (Buzsáki
and Moser, 2013; Schapiro et al., 2013; Henin et al.,
2021). This trend is likely partially because of the different
cognitive and behavioral demands between species, but
also raises the possibility of compensatory mechanisms
in cohorts undergoing iEEG monitoring because of pa-
thology in medial temporal lobes. This possibility cannot
be ruled out completely, and therefore findings should
ideally be corroborated in recordings from a healthy pop-
ulation. Some evidence of the role of lateral temporal lobe
activity in learning a latent space from sequences exists in
nonepileptic populations. Specifically, fMRI studies using
similar tasks have also identified the interior temporal cor-
tex to be reflective of some features of higher-order struc-
ture but not reflective of the estimates of latent spaces as
a whole (Schapiro et al., 2013).

Medial temporal lobe involvement in cognitive map
formation
Much of the work in rodent and human latent space

learning has focused on the hippocampal, rather than lat-
eral temporal lobes and amygdala (Buzsáki and Moser,
2013). Here, the hippocampus and sublobar temporal
white matter are both implicated in our similarity analysis
at higher levels than many neighboring medial temporal
regions. For example, the entorhinal cortex activity is
most commonly associated with low-dimensional projec-
tions of temporally discounted maps rather than the maps
themselves (Stachenfeld et al., 2014; although there are
some exceptions; Garvert et al., 2017). Similarly, the para-
hippocampal gyrus is most often associated with features
of spatial exploration not tied to the underlying latent
space (Epstein, 2008; although there are some excep-
tions; Aguirre et al., 1996). In line with these theories, we
find that the hippocampus has more contacts than either
the entorhinal or parahippocampal cortices, supporting
its important role in latent space learning. However, these
areas are less common and less selective than the nearby
lateral temporal structures and the amygdala in our data.

Other brain regions’ involvement in cognitive map
formation
While the most common regions identified in our study

and in previous work were in the temporal or frontal lobes,
we observed multiple contacts in a wider distributed set
of regions, including the insula, supplementary motor
area, and precentral gyrus. Frontal areas, especially those
in the medial prefrontal and orbitofrontal cortices, have
been implicated in latent space learning, and are thought
to be required at later stages than are medial temporal re-
gions (Wilson et al., 2014; Desrochers et al., 2015; Brunec
and Momennejad, 2019). Consistent with these observa-
tions, we found that response-locked activity shows more
involvement of these frontal areas. Additionally, some
work in humans has shown that activity that reflects the
estimated latent structure (e.g., in place and grid cells) is
much more spatially distributed than in rodents, leading
to theories that most of the cortex is actually capable of
forming these representations (Bao et al., 2019; Viganò
and Piazza, 2020). Our results are in line with these theo-
ries, and support the conclusion that diverse brain regions
could support temporally discounted estimates of the
latent space. Taken together, neural activity most repre-
sented latent space estimates in the amygdala and middle
temporal lobe when locked to the stimulus, whereas they
most represented latent space estimates in the supple-
mentary motor area and inferior frontal gyrus when locked
to the response. These observations indicate that brain
representations of learning are spatially distributed.

Importance of low-dimensional separation of task
features
Studies investigating representations of spatial envi-

ronments have pointed out the usefulness of low-di-
mensional representations for learning to navigate
(Stachenfeld et al., 2014; Whittington et al., 2020).
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Evidence for dimensionality reduction of neural signals
has been observed in neural structures at three distinct
scales: single neurons, anatomic regions, and the
whole brain (Pang et al., 2016; Stringer et al., 2019;
Mack et al., 2020; Zhou et al., 2020a). Broadly, dimen-
sionality reduction of neural signals is thought to enable the
brain to easily extract important, often changing information
and facilitating the development of a sparse, efficient neural
code for items in the environment (Pang et al., 2016; Beyeler
et al., 2019). For dimensionality reduction of cognitive maps
specifically, much work has focused on the medial temporal
lobe. For example, the hippocampus has been functionally
modeled as a variational autoencoder that continuously com-
presses incoming structural and sensory information to iden-
tify similar contexts (Whittington et al., 2020). Additionally,
properties of grid cells (Stachenfeld et al., 2014), commonly
but not exclusively found in the entorhinal cortex (Long and
Zhang, 2021), can be explained by the eigenvectors of a tem-
porally discounted estimate of the latent space. Importantly,
these low-dimensional bases identify borders andmodules in
simulated spaces, the same features thought to be useful for
successful navigation (Stachenfeld et al., 2014).
We asked whether these modeling observations were

recreated in an abstract relational space. Using linear dis-
criminant analysis, we found that modules are highly dis-
criminable in individuals who saw sequences drawn from
a modular graph. Interestingly, many of the estimated la-
tent spaces show the same level of discriminability,
although some show levels far lower. Upon further investi-
gation, we find that the discriminability of estimated latent
spaces was determined by the associated b value. We
chose linear discrimination as a conservative estimate of
separability, which is biologically implementable in theory
by few neurons whose firing mimics the low-dimensional
bases (Pagan et al., 2013); however, other methods of
identifying modules are theoretically possible (Fusi et al.,
2016).
The discussion of these findings raises the possibility

that neural systems are transforming or building estimates
of latent spaces in a way that enhances the separability of
modules. One hypothesis is that the increased separabil-
ity in low-dimensional space arises from neurons with
high-dimensional, combinatorial responses to individual
stimuli (Fusi et al., 2016). These types of neurons are
thought to be present in associative areas such as the
frontal cortex and medial temporal lobes (Fusi et al.,
2016). It is hence intuitively plausible that regions in
lower-order areas are less able to separate modules, but
potentially more able to distinguish individual stimuli (Fusi
et al., 2016). While these theories are based on the func-
tion of individual neurons, similar ideas can be extended
to neuronal populations. Accordingly, future work could
test whether divergences of neural activity from the esti-
mated latent space increase the separability of modules
at all places on the neural processing hierarchy, or only
at more transmodal areas. The observation that neural
dissimilarity better separates modules than the corre-
sponding latent space estimation presents interesting
directions for further investigation independent of vali-
dations of those theories.

Limitations
Here, we have put forth new evidence for neural corre-

lates of latent space learning, although these results
should be interpreted in light of the various limitations of
our study. Many of our analyses focused on individual
participants, an approach that is especially well-suited for
iEEG analysis given the small and heterogeneous sam-
ples. However, some results, including evidence for learn-
ing and temporal changes in neural similarity structure,
were assessed at the group level. To supplement these
findings, we also present larger behavioral cohorts and
numerical simulations. Despite these techniques, our
group level results would be further strengthened by repli-
cation in larger samples.
Additionally, we sought to identify the regions whose

activity was structured most similarly to the estimated la-
tent space. Our approach involved selecting contacts
with stronger correlations than 95% of null models. This
selection process means that there is a chance that some
contacts would be retained because of basic features
of neural activity, and not because of task structure.
Because of this fact, we highlight the regions where multi-
ple contacts were identified, reducing the likelihood that
our conclusions depend on false positives. We ap-
proached identifying contacts with activity structure simi-
lar to the latent space in a data driven manner and,
therefore, expected the same pattern of activity in all re-
gions. We also grouped all identified regions together
when investigating properties of low-dimensional projec-
tions of neural activity structure. However, there is good
evidence that specific regions, or even locations within
the same region might be active at different times (Brunec
and Momennejad, 2019) or use slightly altered transfor-
mations of the estimated space (Garvert et al., 2017).
Identifying these differences is an important pathway for
future analysis, but would require a larger cohort, where
more individuals reliably show activity in the regions of in-
terest, or a hypothesis-driven rather than data-driven as-
sessment of regional contributions.
Lastly, we show evidence that some predictions of how

latent spaces are learned over time are borne out in neural
data. However, our model only uses one relatively simple
learning rule. Other work has tested a variety of learning
rules that all give rise to temporally discounted latent
space estimations, and has shown that some are more
consistent with neural activity than others (Chien and
Honey, 2019). Here, we do not intend to claim that the im-
plemented rule was more accurately reflecting changes in
neural activity than others, but simply to identify the ways
that estimated latent spaces appear in neural activity.
Future work investigating and comparing different learn-
ing rules would be a welcome contribution to the field.

Future directions
Studying latent space learning presents an exciting op-

portunity in neuroscience to connect theoretical models
to both behavior and hypothesized neural mechanisms
for the implementation of these models. Work in rodents
has suggest that temporally discounted estimates of rela-
tional spaces are built through synchronization of cell
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populations to u rhythms (4–10Hz; O’Keefe and Recce,
1993). Distinct populations of cells in the CA1 subfield of
the hippocampus synchronize their firing to the peaks of
u rhythms; the firing of different cells then becomes
bound together via plasticity to represent unique temporal
contexts (Battaglia et al., 2011). Within the hippocampus,
map-like firing patterns of these linked assemblies of neu-
rons reflect physical relationships after exploring new en-
vironments (Skaggs et al., 1996). The phase of u rhythms
also synchronizes with activity in cortical areas such as
the prefrontal cortex where information about temporal
context is used for other processes (Siapas et al., 2005).
In humans, u rhythms have been implicated in tasks re-
quiring estimates of an underlying latent space, including
episodic memory, spatial navigation, and semantic mem-
ory (Johnson and Knight, 2015). However, there is also
evidence that these rhythms are less important for human
learning than for rodent learning, and some investigators
even hypothesize that other mechanisms, such as sac-
cades, are responsible for the synchronization of cell pop-
ulations (Buzsáki and Moser, 2013). Similar studies to
clarify the role of u rhythms during latent space learning
would extend the field appreciably.
While models that incorporate some form of temporal

discounting are common in studies of cognitive maps
(Dayan, 1993), the exact rules that govern updates to
those maps are not well agreed on and can lead to differ-
ent predicted behaviors across tasks (Chien and Honey,
2019). In our specific task, most of these update rules
would lead to highly similar estimated latent spaces,
although tasks with other features such as erroneous
transitions and explicit forgetting can separate the models
(Chien and Honey, 2019). Other individual-level designs
similar to this one would be well suited to study individual
variability in the types of rules used to update cognitive
maps and would be an important addition to the literature.
In addition to testing other existing models, the current
maximum entropy framework could be updated to incor-
porate more features that we know to be important for
statistical learning, such as rewarding reinforcement of
edges, the length of the sequence, or explicit forgetting of
old transitions seen earlier in the sequence. Identifying
how these additions change estimates of the latent space
and individual differences in the weighting of different
components would also represent a significant improve-
ment in our understanding of latent space learning.
Beyond connections to mechanistic neural implementa-

tions of these models, further extensions to more ecologi-
cal contexts would also benefit our understanding of
latent space learning, and how they influence diverse cog-
nitive processes. Extensions of this theory to ecological
network structures, and to different exploration strategies
and walk types have already been discussed and imple-
mented (Karuza et al., 2017; Lynn et al., 2020b; Zhou et
al., 2020b). Nevertheless, our work suggests that further
advancements could expand the theory to incorporate
temporal variability in learning strategies. Here, we show
preliminary evidence for a change in learning rates based
on the extent of temporal discounting, and also a shift in
the extent of temporal discounting used over time. One

would expect that different amounts of temporal dis-
counting might be better suited to different tasks, tasks
occurring at different timescales, or even different stages
of the same task. This intuition is consistent with work
demonstrating that different brain regions, or even differ-
ent parts of the hippocampus, are sensitive to different
timescales of information (Brunec and Momennejad,
2019), which could potentially be related to different
amounts of temporal discounting. Extension of this work
to incorporate more dynamic models of learning would
help us to better understand domain-general latent space
learning, and further align the models of these behaviors
with the evidence of their implementation in the brain.
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